

REPORT TO HEALTH INFRASTRUCTURE

ON DETAILED SITE INVESTIGATION (DSI)

FOR PROPOSED SOIL CONSERVATION WORKS

AT LOT 2 DP1281576, PRINCES HIGHWAY, MORUYA, NSW

Date: 14 December 2022 Ref: E33942PL2rpt3Rev1

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

11

Report prepared by:

Harry Leonard Senior Environmental Scientist

Report reviewed by:

Brendan Page Principal Associate | Environmental Scientist CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E33942PL2rpt3	Final Report	8 December 2022
E33942PL2rpt3Rev1	Final Report – minor revisions	14 December 2022

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed soil conservation works at Lot 2 DP1281576, Princes Highway, Moruya, NSW ('the site'). The purpose of the investigation is to make a detailed assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2a.

This report has been prepared with regards to State Environmental Planning Policy (Resilience and Hazards) 2021¹ (formerly known as SEPP55).

JKE has previously undertaken preliminary investigations for the site including a desktop preliminary site investigation (PSI) (Ref: E33942PL2rptRev1, dated 14 December 2022)² and a PSI with intrusive investigation (Ref: E33942PL2rpt2Rev1, dated 14 December 2022)³. A brief summary of the previous investigation findings is presented in Section 2.

The primary aims of the DSI were to address the data gaps identified in the PSI, in order to characterise potential contamination-related risks in the context of the proposed development and to establish whether further investigation and/or remediation is required. The objectives were to:

- Assess the soil contamination conditions to address the data gaps;
- Provide additional waste classification data for off-site disposal of soil;
- Establish the need for further investigation and/or remediation; and
- Comment on site suitability for the proposed development, with regards to contamination.

The scope of work included the following:

- Review of the PSI report and supplementary site history information from various sources outlined in the report;
- Review of the CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The DSI included a review of supplementary historical information and sampling from 42 borehole locations. Minor detectable concentrations of polycyclic aromatic hydrocarbons (PAHs) were encountered within the surficial soil samples at two locations; however, concentrations were well below the SAC. The PAHs were associated with minor ash content in the soils. All other contaminants of potential concern (CoPC) were reported at low concentrations (all below the SAC) or at levels below the laboratory detection limits.

There were no complete source-pathway-receptor (SPR) linkages identified, and on this basis, risks from contamination were assessed to be low.

Based on the findings of the DSI, JKE is of the opinion that the site is suitable for the proposed soil conservation works described in Section 1.2, from a contamination viewpoint.

We note that a small portion of the south-west corner of the site is within an ASS risk area, which encroaches into the proposed footprint of Sediment Basin 1. On this basis, JKE consider that either an intrusive ASS investigation should be undertaken or an ASS Management Plan (ASSMP) be implemented for the proposed soil conservation works as described in Section 1.2.

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

² JKE, (2022a). Report to Health Infrastructure on Preliminary Site Investigation (Desktop Contamination Assessment) for Proposed Soil Conservation Works at Lot 2 DP 1281576, Princes Highway, Moruya, NSW. (Referred to as the Desktop PSI)

³ JKE, (2022b). Report to Health Infrastructure on Preliminary Site Investigation (Intrusive Investigation) for Proposed Soil Conservation Works at Lot 2 DP1281576, Princes Highway, Moruya, NSW. (Referred to as the Intrusive PSI)

There is considered to be a low potential for unexpected, contamination-related finds. We consider that any associated risks from unexpected finds can be easily mitigated via the development and implementation of an unexpected finds protocol. We recommend that this protocol be developed by a suitably qualified contaminated land consultant prior to the commencement of any earthworks, and that the protocol be implemented during the earthworks and construction phases of the project.

Confirmation of the waste classification for any material to be disposed off-site as part of the proposed development should be undertaken. Recommendations regarding waste classification of material are provided in Section 9 of this report.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTRO	DUCTION	1
	1.1	Тне Site	1
	1.2	PROPOSED DEVELOPMENT DETAILS	2
	1.3	AIMS AND OBJECTIVES	2
	1.4	SCOPE OF WORK	2
2	SITE IN	FORMATION	4
	2.1	JKE DESKTOP PSI	4
	2.2	JKE INTRUSIVE PSI	4
	2.3	SITE IDENTIFICATION	5
	2.4	SITE LOCATION AND REGIONAL SETTING	5
	2.5	ТОРОДКАРНУ	6
	2.6	GENERAL SITE DESCRIPTION	6
3	SUMM	ARY OF GEOLOGY AND HYDROGEOLOGY	7
	3.1	REGIONAL GEOLOGY AND SITE SUBSURFACE CONDITIONS	7
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	7
	3.3	Hydrogeology	7
	3.4	Receiving Water Bodies	8
4	SUPPL	EMENTARY SITE HISTORY INFORMATION	9
	4.1	Review of Historical Land Title Records	9
	4.2	REVIEW OF COUNCIL RECORDS	9
	4.3	SAFEWORK NSW RECORDS	9
	4.4	SUMMARY OF SITE HISTORY INFORMATION	9
5	CONCE	PTUAL SITE MODEL	10
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	10
	5.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	11
6	SAMPI	ING, ANALYSIS AND QUALITY PLAN	13
7	SITE AS	SSESSMENT CRITERIA (SAC)	15
	7.1	Soil	15
8	RESUL	rs	18
	8.1	SUMMARY OF DATA (QA/QC) EVALUATION	18
	8.2	SUBSURFACE CONDITIONS	18
	8.3	FIELD SCREENING	19
	8.4	Soil Laboratory Results	19
9	WAST	CLASSIFICATION ASSESSMENT	22
10	DISCU	SSION	23
	10.1	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	23
	10.2	DECISION STATEMENTS	24
11	CONCL	USIONS AND RECOMMENDATIONS	25

12 LIMITATIONS

26

JKEnvironments

List of Tables

Table 2-1: Site Identification	5
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	10
Table 5-2: CSM	11
Table 6-1: Laboratory Details	14
Table 7-1: Details for Asbestos SAC	15
Table 7-2: Waste Categories	16
Table 8-1: Summary of Subsurface Conditions	18
Table 8-2: Summary of Field Screening	19
Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	19
Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	21

Attachments

Appendix A: Report Figures Appendix B: Site Information and Site History Appendix C: Laboratory Results Summary Tables Appendix D: Borehole Logs Appendix E: Laboratory Reports & COC Documents Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: JKE Sampling, Analysis and Quality Plan (SAQP) Appendix I: JKE PSI Information Appendix J: Guidelines and Reference Documents

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL ACM
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines Area of Environmental Concern	ADWG
Australian Height Datum	AHD
Acid Sulfate Soil	AND
Above-Ground Storage Tank	ASS
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminated Land Management Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Department of Planning and Environment	DPE
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environmental Site Assessment	ESA
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Health Investigation Level	HILS
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	ΝΑΤΑ
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН
Potential ASS	PASS
Polychlorinated Biphenyls	PCBs
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC

Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Review of Environmental Factors	REF
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Secretary's Environmental Assessment Requirements	SEARs
State Environmental Planning Policy	SEPP
Site Specific Assessment	SSA
State Significant Development	SSD
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units Litres L Metres BGL mBGL Metres m Millivolts mV Millilitres ml or mL Milliequivalents meq micro Siemens per Centimetre μS/cm Micrograms per Litre μg/L Milligrams per Kilogram mg/kg Milligrams per Litre mg/L Parts Per Million ppm Percentage % Percentage weight for weight %w/w

1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed soil conservation works at Lot 2 DP1281576, Princes Highway, Moruya, NSW ('the site'). The purpose of the investigation is to make a detailed assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2a.

This report has been prepared with regards to State Environmental Planning Policy (Resilience and Hazards) 2021⁴ (formerly known as SEPP55).

This report supports a Review of Environmental Factors (REF) prepared for Health Infrastructure NSW pursuant to part 5 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) for the undertaking of soil conservation works and the construction of a new road at Lot 2 DP 1281576, Princes Highway, Moruya.

JKE has previously undertaken preliminary investigations for the site including a desktop preliminary site investigation (PSI) (Ref: E33942PL2rptRev1, dated 14 December 2022)⁵ and a PSI with intrusive investigation (Ref: E33942PL2rpt2Rev1, dated 14 December2022)⁶. A brief summary of the previous investigation findings is presented in Section 2.

The DSI was undertaken concurrently with a salinity investigation. The results of the salinity investigation are reported under a separate cover.

1.1 The Site

The site of the soil conservation works, and ancillary road works is located on the Princes Highway in the NSW south coast town of Moruya. The site is legally described as Lot 2 DP 1281576 and is a large vacant greenfield site. The soil conservation works will facilitate the ongoing management of the greenfield lot. To the west of the site is Moruya TAFE, and to the north is a small residential subdivision called Mynora Estate. An aerial figure of the site is shown on the following **Plate 1**.

⁴ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

⁵ JKE, (2022a). Report to Health Infrastructure on Preliminary Site Investigation (Desktop Contamination Assessment) for Proposed Soil Conservation Works at Lot 2 DP 1281576, Princes Highway, Moruya, NSW. (Referred to as the Desktop PSI)

⁶ JKE, (2022b). Report to Health Infrastructure on Preliminary Site Investigation (Intrusive Investigation) for Proposed Soil Conservation Works at Lot 2 DP1281576, Princes Highway, Moruya, NSW. (Referred to as the Intrusive PSI)

Plate 1: Proposed site location.

1.2 Proposed Development Details

The works proposed under the REF include the following:

- Construction of three erosion and sediment basins, ranging between 507m² and 990m² in area.
- Construction of an ancillary road into the site to facilitate construction access into the site.

JKE understand from the civil plans that excavation for the sediment basins will be required to a maximum depth of approximately 2.5m below the existing ground level. A further detailed description of the proposed works is contained in the REF report prepared by Ethos Urban.

1.3 Aims and Objectives

The primary aims of the investigation were to address the data gaps identified in the PSI, in order to characterise potential contamination-related risks in the context of the proposed development and to establish whether further investigation and/or remediation is required. The objectives were to:

- Assess the soil contamination conditions to address the data gaps;
- Provide additional waste classification data for off-site disposal of soil;
- Establish the need for further investigation and/or remediation; and
- Comment on site suitability for the proposed development, with regards to contamination.

1.4 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP55665PL) of 17 December 2021 and written acceptance from the client of 21 December 2021. The scope of work included the following:

- Review of the PSI report and supplementary site history information from various sources outlined in the report;
- Review of the CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)⁷, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁸ and SEPP Resilience and Hazards 2021. A list of reference documents/guidelines is included in the appendices.

⁷ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

⁸ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 JKE Desktop PSI

The Desktop PSI included a review of site information, including background and site history information and a site walkover inspection. Soil sampling was not undertaken.

Based on the information reviewed and a weight of evidence assessment of the site history documentation, and site observations made by JKE, it was considered that the site has been historically used for grazing purposes since at least 1961 and it was presumed to have been of similar use before this time. The immediate surrounds appeared to have been used for similar purposes, with the exception of the low-density residential properties to the north and south of the site. There were no historical structures on site and the site inspection and aerial photographs did not identify evidence of filling.

Based on the scope of work undertaken for the Desktop PSI, JKE identified the following potential contamination sources/areas of environmental concern (AEC):

- Sediment runoff from nearby stormwater drains; and
- Historical agricultural use.

The conclusions of the Desktop PSI were that, based on the potential contamination sources/AEC identified, there is a potential for site contamination and further investigation of the contamination conditions was considered to be required. A preliminary intrusive investigation was recommended in the first instance to assess the potential for the contaminants of potential concern (CoPC) to occur in soil.

2.2 JKE Intrusive PSI

The scope of the Intrusive PSI was conducted via sampling of the soil on site to obtain preliminary data on the potential for soil contamination. The soil laboratory results did not encounter any concentrations of contaminants above the human-health or ecological Site Assessment Criteria (SAC).

Detectable concentrations of total recoverable hydrocarbons (TRH) (F2) and TRH (F3) were encountered within the natural clay soil sample within BH26 (0.2-0.3m). These concentrations were well below the SAC and therefore were not considered to pose a risk to site receptors. However, considering there were no other detectable concentrations of TRH above the laboratory PQL in the remaining samples analysed, further investigation was recommended within the vicinity of BH26 to properly rule out any widespread TRH contamination issues.

Several data gaps were identified in the report including some site history information not being reviewed, and limited sampling data.

Based on the potential contamination sources/AEC identified, and the potential for contamination, further investigation of the contamination conditions was considered to be required. It was noted that agricultural

activities are listed in Table 1 of the SEPP55 Planning Guidelines (1998)⁹ as activities that may cause contamination.

The Intrusive PSI report recommend that a DSI be undertaken to address the data gaps identified. It was recommended that the supplementary site history information be reviewed initially and the CSM to be updated based on this information.

The tabulated laboratory results, figures and borehole logs from the Intrusive PSI are provided in Appendix I.

2.3 Site Identification

Table 2-1: Site Identification	
Current Site Owner (certificate of title):	Patent Development Pty Ltd (as per title report of 18 May 2022)
Site Address:	Princes Highway, Moruya, NSW
Lot & Deposited Plan:	Lot 2 in DP1281576
Current Land Use:	Vacant/Grazing
Proposed Land Use:	Soil Conservation Works (Ancillary Roads and Sediment Basins)
Local Government Authority:	Eurobodalla Shire Council
Current Zoning:	R2: Low Density Residential; and RU1: Primary Production
Site Area (m ²) (approx.):	22 hectares (220,000m ²)
RL (AHD in m) (approx.):	7-40
Geographical Location (MGA56) (approx. centre of site):	E: 237804.255
	N: 6020784.595
Site Location Plan:	Figure 1
Sample Location Plan (wider site):	Figure 2a
Sample Location Plan (wash zone):	Figure 2b

Table 2-1: Site Identification

2.4 Site Location and Regional Setting

The site is located in a predominantly residential and rural area of Moruya and is bound by Princes Highway to the south and partially by Albert Street to the north. Racecourse Creek is located approximately 550m to the north-west of the site.

⁹ Department of Urban Affairs and Planning, and Environment Protection Authority, (1998). *Managing Land Contamination Planning Guidelines* SEPP55-Remediation of Land.

2.5 Topography

The site is located within an area of undulating regional topography. The site itself comprises two hill peaks in the north-east and south-east corners of the site. The south-east hill/spur slopes down towards the north and west at a gradient of between approximately 7° to 11°. The north-east hill/spur slopes down towards the north, west and south at a gradient of between approximately 3° to 7°.

There are two tributaries (creek lines) that extend westward through the site (see Figure 2) and flow towards the low-lying areas, further west of the site. These appeared to flow towards more significant tributaries of Racecourse Creek, beyond the western site boundary.

2.6 General Site Description

A walkover inspection of the site was undertaken by JKE on 25 March 2021 as part of the Desktop PSI and a subsequent inspection was undertaken on 11 July 2022 during the DSI, where the site remained largely unchanged. At the time of the inspection, the site was vacant and utilised for grazing of a small herd of cattle. The majority of the site was grassed, with some large native eucalypt trees across the eastern and southern portions of the site. Granite bedrock outcropping was visible at the highest points of the hills, with large boulders also visible at the surface mid-way down the hill slopes/spurs.

The site was fenced by a timber and wire fence that ran the entire perimeter of the property and appeared in good condition. The site appeared to follow that natural topography of the land and surrounds, with no evidence of cut or filling. There was no evidence of filling or other waste in the vicinity of the creek lines. The small dams appeared to have been formed by pushing up the native soils to form small embankments on the low side of the creek lines.

During the DSI drilling works, it was noted that the area in the vicinity of BH133 appeared to have been used to contain a camp fire at some stage prior to undertaking the fieldwork. A small stockpile of timber, some isolated bricks and burnt material was visible at the surface nearby.

Surface water runoff is presumed to follow in sympathy with the topography and the varying slopes of the site, then generally tending towards the west along the creek lines. A stormwater drain located on Albert Street to the north of the site appeared to drain onto the site and meetup with the northern-most creek line, as shown on Figure 2a. From the observation during the site walkover, the creek lines were found to support various forms of freshwater ecology such as fish, frogs and aquatic plants, as well as native plant life.

The surround areas of the site included: Braemar Drive and low-density residential houses to the north; the Princes Highway and low density residential to the south; and vacant/grazing land to the east and west. JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

3 SUMMARY OF GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology and Site Subsurface Conditions

Regional geological information was reviewed for the Desktop PSI. The information indicated that the site is underlain by Moruya Tonalite of the Moruya Suite, which typically consists of tonalite, granodiorite, biotite, granite, adamellite, diorite and gabbro. The Moruya 1:25,000 Quaternary Geology Sheet indicated that most of the site is underlain by bedrock of the Moruya Supersuite. However, along to the creek lines adjacent to the western site boundary, Quaternary aged alluvial and colluvial fan soils are mapped. These soils comprise *"fluvial sand, silt, gravel, clay"*.

The Intrusive PSI encountered fill (topsoil) from the surface to depths of approximately 0.1m to 0.3m below ground level (BGL), underlain by natural clay soils to depths of approximately 0.3m to 1.4mBGL. The topsoil was deemed to be "fill" as it was expected/implied that the topsoil was disturbed via grazing activities etc. However, it is noted that the topsoil is not deemed to be imported fill. Granite bedrock was encountered beneath the natural clay in all boreholes and extended to the termination depth.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

A review of the acid sulfate soil (ASS) risk map prepared by Department of Land and Water Conservation (1997)¹⁰ indicated that the site is partially located in an area classed as having 'low probability' of occurrence of ASS materials within 1 metre of the ground surface.

ASS information presented in the Desktop PSI indicated that a Class 2 ASS risk area located to the west of the site, encroaches slightly onto the south-west corner of the site. Works in a Class 2 risk area that could pose an environmental risk in terms of ASS include all works below existing ground level and works by which the water table is likely to be lowered. This small area of Class 2 ASS risk is located on the low-lying area at the base of the western facing hillslope and the proposed Sediment Basin 1 is located on the boundary of the Class 2 risk area.

JKE note that intrusive sampling and analysis for ASS was not included in the scope of the investigation.

3.3 Hydrogeology

There was a total of 44 registered bores within the report buffer of 2,000m. The nearest registered bore was located approximately 418m from the site. This was utilised for domestic/stock purposes. The bores were generally registered for a mixture of monitoring, domestic and domestic stock purposes. The potential for viable groundwater abstraction and use of groundwater under these conditions was considered to be low. Use of groundwater is not proposed as part of the development. The majority of the registered bores are located in the low-lying land to the west of the site.

¹⁰ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 8926S3, Moruya, Ed 2)

3.4 Receiving Water Bodies

Several small dams were located along the creek lines and these appeared relatively full during the inspection due to the recent rain event. The upper sections of the creek lines on site were not expected to permanently hold water. The site location and regional topography indicates that water from the creek lines on site would flow towards the west, linking up with other tributaries of Racecourse Creek.

4 SUPPLEMENTARY SITE HISTORY INFORMATION

4.1 Review of Historical Land Title Records

Historical land title records were reviewed for the DSI to address data gaps and inform the CSM. The record search was undertaken by InfoTrack. Copies of the title records are attached in the appendices. The title records indicate the following:

- The majority of the site was privately owned by farmers from 1902 to 1971;
- A strip of land along the southern boundary was formerly a Crown Road that was closed by notification published 26 September 1958 and subsequently incorporated into the wider site ownership; and
- The entire site was purchased by Patent Development Pty Ltd in 1971, and has remained in the same ownership to the present day.

The land title records provided additional evidence that the site has historically been used for agricultural purposes.

4.2 Review of Council Records

Council records were sourced under an informal access to information request and were reviewed for the DSI. The council record information that was received in response to the search request pertained to a subdivision project along South Head Road, Moruya, NSW and the records did not contain any development or other information relevant to the site, or that may impact the site in the context of land contamination.

4.3 SafeWork NSW Records

SafeWork NSW records in relation to the registered storage of dangerous goods were reviewed for the DSI. Copies of relevant documents are attached in the appendices. The search did not identify any licences to store dangerous goods including underground fuel storage tanks (USTs), above ground storage tanks (ASTs) or chemicals at the site.

4.4 Summary of Site History Information

Based on the information reviewed and a weight of evidence assessment of the site history documentation (including that from the Desktop PSI), and site observations made by JKE, we consider that the site has been historically used for grazing purposes since at least 1961 and it is presumed to have been of similar use before this time. The immediate surrounds appeared to have been used for similar purposes, with the exception of the low-density residential properties to the north and south of the site.

There were no historical structures on site and the site inspection and aerial photographs did not identify evidence of filling.

5 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 10.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	СоРС
Sediment runoff from nearby stormwater drains – There is a potential for contaminant transport in sediment/runoff from nearby roadways. A stormwater pipe discharges in an area adjoining the central northern boundary of the site. It is anticipated that the stormwater (and sediment loading within the stormwater) could eventuate in the northern-most creek line and flow westward to the low-lying area beyond the western end of the site (see Figure 2a). We note that the land use in these nearby, off-site areas are benign (i.e. residential, rather than heavy industry) and the potential for contamination to be associated with this AEC is relatively low.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
<u>Historical agricultural use</u> – The site appears to have been used for low-intensity grazing purposes. This could have resulted in contamination across the site via use of machinery and potential (although unlikely) use of pesticides. However, we note that the intrusive PSI did not identify any widespread impacts from contamination.	Heavy metals, TRHs, PAHs, OCPs and asbestos JKE note that OCPs only became commercially available in the 1940s. Prior to this time pesticides were predominantly heavy metal compounds.
There was no evidence of on-site irrigation pipework (e.g. pipework potentially containing asbestos) during the inspection, however, the presence of such pipework cannot be ruled out	
Potential TRH Impact at BH26 – low concentrations of TRHs were detected in BH26 during the Intrusive PSI. The occurrence of TRHs at this location was inconsistent with the remaining analysis results as TRHs were not detected elsewhere.	TRHs (based on Intrusive PSI data), and possibly (although unlikely) BTEX

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Based on the site inspection and historical assessment, JKE is of the opinion that there is a low potential for the site to have been used for activities associated with per- and polyfluoroalkyl substances (PFAS). We note

that Appendix B2 of the PFAS National Environmental Management Plan (2020)¹¹ refers to 'agriculture' more broadly as an activity potentially associated with PFAS, however this relates to use of firefighting foams in the poultry industry, or with adjuvant or active ingredients in fertilisers and pesticides. There were no pesticides detected in the soil samples during the Intrusive PSI.

Given the apparent low-intensity grazing activities at the site, use of pesticides is unlikely. It is also considered unlikely that stock feed (which is another potential source of OCPs) would have been imported. On this basis, we do not consider PFAS to be CoPC. This should be re-evaluated in the event that OCPs are identified in soil during the DSI.

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM	
Potential mechanism for contamination	The potential mechanisms for contamination are most likely to include 'top-down' impacts, spills and runoff from stormwater/sediment.
Affected media	Soil has been identified as the potentially affected medium. The potential for groundwater (or surface water) impacts is considered to be relatively low. However, this would need to be considered in the event mobile/leachable contamination was identified in soil. The potential for soil vapour impacts is also considered to be relatively low. Soil vapour would need to be considered in the event that volatile TRHs, BTEX and/or naphthalene (PAH compound) was identified in soil.
Receptor identification	The receptor identification and pathways/exposure assessment have considered a broader range of receptors that would apply in the context of the overall site development for a more sensitive land use, not only those receptors applicable in the context of the REF. Human receptors include site occupants/users (including adults and children), construction workers and intrusive maintenance workers. Off- site human receptors include adjacent land users in a residential setting. Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and freshwater ecology in the dams and creeks.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within future building and/or enclosed/semi-enclosed spaces during excavation.

Table 5-2: CSM

¹¹ Heads of EPA Australia and New Zealand, (2020). *PFAS National Environmental Management Plan Version 2.0* (referred to as PFAS NEMP)

Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into trenches/excavated during excavation/construction (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils during excavation and construction or in unpaved areas; Migration of stormwater (and sediment) onto the site and into the creek lines/dams via overland flows; and Migration of groundwater into nearby water bodies, including aquatic ecosystems, or to areas where irrigation bores exist.
Data Gaps	 The data gaps from the Intrusive PSI are were as follows: A land titles search was outside the scope of the desktop assessment. Although it was considered unlikely that information from the land titles records would alter the CSM, a search of these records was recommended for completeness; The review of council records was limited to planning-related information within the section 10.7 certificates and/or within the Local Environmental Plan. Although it was considered unlikely that additional information from the local council would alter the CSM, a search of local records in relation to the property file and building/development records was recommended for completeness; A search of SafeWork NSW records for licences to store dangerous goods was outside the scope of the previous investigations. Although it was considered unlikely that SafeWork NSW records existed for the site, a search of these records was recommended for the geotechnical investigation. Sampling was not undertaken across the entirety of the site and limited data was collected from the overland flow/potential stormwater wash zone in the north-west portion of the site. Data gap items 1, 2 and 3 were addressed via the supplementary site history searches and evaluation presented in Section 4 of this report. Data gap item 4 has been addressed via the additional intrusive investigation scope described in the subsequent sections of this report.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

JKE issued a SAQP (Ref: E33942PLrpt-SAQP, dated 17 December 2021)¹² for the DSI, which is attached in Appendix H. The methodology outlined in the SAQP was generally adhered to and is summarised below:

- Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.3;
- Soil samples were obtained from a total of 42 boreholes (BH101 to BH142) across the site to meet the project objectives, as follows:
 - The locations within the 'wash zone' consisted of grid-based sampling to meet the minimum sampling density for hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995)¹³ (which was applicable at the time of the works) as shown on the attached Figure 2b;
 - The sampling density across the remainder of the site was not designed to meet the minimum density recommended in the EPA Sampling Design Guidelines. Alternatively, a decreased density of one sample per hectare (1 per 10,000m²) was undertaken, as shown on the attached Figure 2a. This only occurred in the grid zones where no data had previously been collected under the Intrusive PSI scope, and was considered reasonable based on the low contaminant concentrations reported during the Intrusive PSI, the lack of point source AEC and the perceived low potential for contamination across the broader site area; and
 - Five targeted locations were sampled in the vicinity of BH26, as shown on the attached Figure 2a.
- Soil samples were obtained using hand tools, between 11 and 15 July 2022. This predominantly included use of a shovel to facilitate bulk asbestos quantification sampling, and use of a hand auger. For general consistency throughout the report, the sample locations have been referred to as boreholes, with the associated samples prefixed with 'BH'.

Please refer to the SAQP attached in the appendices for further information.

We note that following preparation of the SAQP and completion of fieldwork for the DSI, the NSW EPA Sampling Design Part 1 -Application (2022)¹⁴ contaminated land guidelines were released.

6.1.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

¹² JKE (2021) Report to Health Infrastructure on Sampling, Analysis and Quality Plan for – Proposed Eurobodalla Health Service at Lot 6 DP1212271, Princes Highway, NSW. (referred to as the SAQP)

¹³ NSW EPA, (1995), Contaminated Sites Sampling Design Guidelines. (referred to as EPA Sampling Design Guidelines 1995)

¹⁴ NSW EPA, (2022). *Sampling design part 1 - application*. (referred to as EPA Sampling Design Guidelines 2022)

Table 6-1: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	300620
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	32571

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below. Adoption of the land use type A exposure scenario is considered to be conservative, however, this approach aligns with the philosophy of the NEPM 2013 which promotes use of more conservative criteria to consider the most sensitive site receptors, which in this case is the potential for children and adults visiting/occupying the site following the completion of the soil conservation works.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A);
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
 HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹⁵; and
- Asbestos was assessed against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability
Asbestos in Soil	 The HSL-A criteria were adopted for the assessment of asbestos in soil. The SAC adopted for asbestos were derived from the NEPM 2013 and are based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021)¹⁶. The SAC include the following: No visible asbestos at the surface/in the top 10cm of soil; <0.01% w/w bonded asbestos containing material (ACM) in soil; and <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):
	% w/w asbestos in soil = <u>% asbestos content x bonded ACM (kg)</u> Soil volume (L) x soil density (kg/L)
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):

Table 7-1: Details for Asbestos SAC

¹⁵ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 -Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

¹⁶ Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)

Guideline	Applicability	
	% w/w asbestos in soil =	% asbestos content x bonded ACM (g)
		Soil weight (g)

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹⁷;
- ESLs were adopted based on the soil type;
- EILs for selected metals were calculated using the physiochemical soil parameters from the laboratory data presented in report 300620. This was based on the average physiochemical data from three clay samples and applying these to 'fine' soils, and by directly adopting the physiochemical parameters for one sand sample and applying these to 'coarse' soils. The average physiochemical parameters for 'fine' soils and the parameters for 'coarse' soils are presented in Table S6; and
- These physiochemical soil data were used to select the added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁸, based on 'old suburbs, low traffic'. This method is considered to be adequate for the Tier 1 screening.

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁹ as outlined in the following table:

Category	Description			
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste. 			
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste. 			

Table 7-2: Waste Categories

¹⁷ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

¹⁸ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.
¹⁹ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

Category	Description			
Hazardous Waste	 If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste. 			
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette. 			

8 RESULTS

8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description
Fill/Topsoil	Topsoil was encountered at the surface in all boreholes with the exception of BH133 and extended to depths of approximately 0.1m to 0.6m below ground level (BGL).
	The topsoil typically comprised silty sandy clay with inclusions of ash, roots and root fibres. JKE note that the description of 'topsoil' for soil profiles deeper than 0.4m BGL includes a root affected zone and deeper soil of the same profile.
	'Fill' was logged in BH133 at the surface and extended to a depth of approximately 0.2m BGL. The fill comprised silty sandy clay with inclusions of brick fragments, ash and root fibres. Based on the site observations, it was considered unlikely that this 'fill' was likely a layer of disturbed soil that had been impacted by during previous use of the area (i.e. during use of the area for a camp fire as noted in the site description).
Natural Soil	Natural silty sandy clay and silty clay soils were encountered at the surface or beneath the topsoil in all boreholes with the exception of BH131 and extended to depths of approximately 0.5m to 1.0mBGL.
Bedrock	Inferred granite bedrock was encountered beneath the natural clay in a number of boreholes at depths of between 0.5m to 0.8mBGL. The bedrock was unable to be confirmed due to the use of hand tools.
Groundwater	Groundwater seepage was encountered in a large number of boreholes at the top of the natural clay soil profile, this was believed to be due to saturation of the topsoil due to recent rain events in the area.
	Standing water was measured within BH03, BH115, BH116, BH117, BH118, BH128, BH135 and BH137 at depths of between approximately 0.3m BGL and 0.8m BGL upon completion of augering/excavation.

Table 8-1: Summary of Subsurface Conditions

8.3 Field Screening

A summary of the field screening results is presented in the following table:

Aspect	Details
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0ppm to 2ppm equivalent isobutylene which indicates a negligible level of PID detectable VOCs.
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report tables. All results were below the SAC. Suspected asbestos materials were not observed in any of the samples.

Table 8-2: Summary of Field Screening

8.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

8.4.1 Human Health and Environmental (Ecological) Assessment

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	42	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Cadmium	42	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Chromium (total)	42	14	0	0	-
Copper	42	8	0	0	-
Lead	42	12	0	0	-
Mercury	42	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Nickel	42	8	0	0	-
Zinc	42	21	0	0	-
Total PAHs	42	0.2	0	NSL	-
Benzo(a)pyrene	42	0.06	NSL	0	-
Carcinogenic PAHs (as BaP TEQ)	42	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Naphthalene	46	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-

Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N	Max.	N> Human	N> Ecological	Comments
		(mg/kg)	Health SAC	SAC	
DDT+DDE+DDD	32	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
DDT	32	<pql< td=""><td>NSL</td><td>0</td><td>-</td></pql<>	NSL	0	-
Aldrin and dieldrin	32	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Chlordane	32	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Heptachlor	32	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
Chlorpyrifos (OPP)	32	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
PCBs	32	<pql< td=""><td>0</td><td>NSL</td><td>-</td></pql<>	0	NSL	-
TRH F1	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
TRH F2	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
TRH F3	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
TRH F4	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Benzene	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Toluene	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Ethylbenzene	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Xylenes	46	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Asbestos (in soil) – 500ml	37			NA	-
Asbestos Containing Material (ACM) >7mm		ACM <7mm <0.01% w/w	0		
Asbestos Fines/Fibrous Asbestos (AF/FA)		AF/FA <0.001% w/w			

Notes:

N: Total number (primary samples) NSL: No set limit

NL: Not limiting

8.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 7.1.4. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Arsenic	42	0	0	-
Cadmium	42	0	0	-
Chromium	42	0	0	-
Copper	42	NSL	NSL	-
Lead	42	0	0	-
Mercury	42	0	0	-
Nickel	42	0	0	-
Zinc	42	NSL	NSL	-
TRH (C ₆ -C ₉)	46	0	0	-
TRH (C10-C36)	46	0	0	-
BTEX	46	0	0	-
Total PAHs	42	0	0	-
Benzo(a)pyrene	42	0	0	-
OCPs & OPPs	32	0	0	-
PCBs	32	0	0	-
Asbestos	37	-	-	Asbestos was not detected in the samples analysed.

Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

N: Total number (primary samples)

NSL: No set limit

9 WASTE CLASSIFICATION ASSESSMENT

The following preliminary waste classifications are provided for any waste soils/rock that are surplus to the project. Once the excavation details/work methods and anticipated waste quantities are known, the requirements for further waste classification and delineation/segregation of waste streams should be assessed. JKE or another suitably qualified environmental consultant should be contacted to establish the requirements for any further inspections, analysis and/or reporting to confirm the preliminary classification and provide the required documentation to facilitate the off-site disposal or re-use of waste.

Based on the results of the DSI, and at the time of reporting, the surficial root-affected material within the 'wash zone' (see Figures 2a and 2b) is classified as **General Solid Waste (non-putrescible)** for off-site disposal purposes. Whilst this material is not deemed to be 'fill', it is not considered to meet the definition of VENM as the surficial soils in this area have likely been formed via, or impacted by, sediment deposition resulting from overland flow and sediment transportation from nearby roadways, and other off-site areas.

Due to the detections of traces of hydrocarbons (TRH and PAHs), the fill/topsoil in the vicinity of BH26 and BH133 is classified as **General Solid Waste (non-putrescible)** for off-site disposal purposes. Should works require the excavation and removal of soil in these areas, further testing should occur to confirm this classification.

The topsoil material and the natural subsoils and bedrock across the remainder of the site is assigned a preliminary classification of **VENM** for off-site disposal or re-use purposes. This is due to the apparent natural/undisturbed state of this material across the majority of the site, and the absence of contamination based on the analysis undertaken by JKE.

None of the results would preclude the on-site re-use of excavated material, from a contamination risk perspective.

10 DISCUSSION

10.1 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

10.1.1 DSI Sampling Plan

Sampling locations within the 'wash zone' were placed on a systematic sampling plan with a grid spacing of approximately 20m between sampling locations. A systematic plan was considered suitable to identify hotspots to a 95% confidence level and calculate UCLs for specific data populations. The following hotspot diameters have been calculated:

- Circular hotspot diameter with a 95% confidence level (K value of 0.59) 23.6m; and
- Elliptical hotspot diameter with a 95% confidence level (K value of 0.9) 36m along the long dimension and 18m along the short dimension.

The DSI did not identify any contamination hotspots (as defined above) within the wash zone.

Sample locations across the remainder of the site were placed on a systematic grid spacing of approximately 100m between sampling locations, only in the areas of the site where sampling had not occurred previously. This sampling plan was considered suitable to provide spatial coverage of the site to verify the CSM. An additional five sample locations were placed around BH26, where a low detection of TRH was encountered during the Intrusive PSI. Contaminant concentrations were not reported above the SAC in any of these locations.

10.1.2 Soil

Fill material was only encountered in one borehole (BH133) drilled for the DSI and it was considered that the 'fill' was associated with debris from the disturbance/previous camp fire in the area, rather than being associated with broader-scale fly tipping or importation of materials. The remaining boreholes encountered topsoil at the surface. Based on multiple lines of evidence, including the borehole information and the site inspection, extensive areas of fill are not expected to occur at the site. The sub-surface conditions encountered during the DSI validated the CSM and confirmed that the site has not been filled.

JKE note that detectable concentrations of PAHs were encountered within the topsoil sample within BH112 (0-0.1) and fill sample within BH133 (0-0.1) with concentrations of 0.2mg/kg and 0.06mg/kg respectively. These concentrations are well below the SAC and therefore are not considered to pose a risk to site receptors. Both these boreholes encountered ash within the upper soil profiles and it is assumed that these minor detections of PAHs are associated with the presence of ash, rather than any other contamination source.

All other CoPC were reported at low concentrations (all below the SAC) or at levels below the laboratory detection limits. Other than the PAHs noted above, all organic contaminant concentrations were below the PQLs and only traces of heavy metals were detected. The presence of the heavy metals is considered to reflect typical background conditions.

There were no complete SPR linkages identified, and on this basis, risks from contamination were assessed to be low.

10.2 Decision Statements

The decision statements are addressed below:

Are any results above the SAC?

No.

Do potential risks associated with contamination exist, and if so, what are they?

Based on the DSI data, risks associated with contamination have not been identified at the site.

Is remediation required?

The DSI has not identified any triggers for site remediation.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

JKE is of the opinion the site is suitable for the proposed development. There is considered to be a low potential for unexpected, contamination-related finds. We consider that any associated risks from unexpected finds can be easily mitigated via the development and implementation of an unexpected finds protocol. This has been reflected in our recommendations.

11 CONCLUSIONS AND RECOMMENDATIONS

The DSI included a review of supplementary historical information and sampling from 42 borehole locations. Minor detectable concentrations of PAHs were encountered within the surficial soil samples at two locations; however, concentrations were well below the SAC. The PAHs were associated with minor ash content in the soils. All other CoPC were reported at low concentrations (all below the SAC) or at levels below the laboratory detection limits.

There were no complete SPR linkages identified, and on this basis, risks from contamination were assessed to be low.

Based on the findings of the DSI, JKE is of the opinion that the site is suitable for the proposed soil conservation works described in Section 1.2, from a contamination viewpoint.

We note that a small portion of the south-west corner of the site is within an ASS risk area, which encroaches into the proposed footprint of Sediment Basin 1. On this basis, JKE consider that either an intrusive ASS investigation should be undertaken or an ASS Management Plan (ASSMP) be implemented for the proposed soil conservation works as described in Section 1.2.

There is considered to be a low potential for unexpected, contamination-related finds. We consider that any associated risks from unexpected finds can be easily mitigated via the development and implementation of an unexpected finds protocol. We recommend that this protocol be developed by a suitably qualified contaminated land consultant prior to the commencement of any earthworks, and that the protocol be implemented during the earthworks and construction phases of the project.

Confirmation of the waste classification for any material to be disposed off-site as part of the proposed development should be undertaken. Recommendations regarding waste classification of material are provided in Section 9 of this report.

JKE consider that the report objectives outlined in Section 1.3 have been addressed.

12 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- This report was produced based on information gathered as part of previous investigations associated with other proposed developments at the site;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

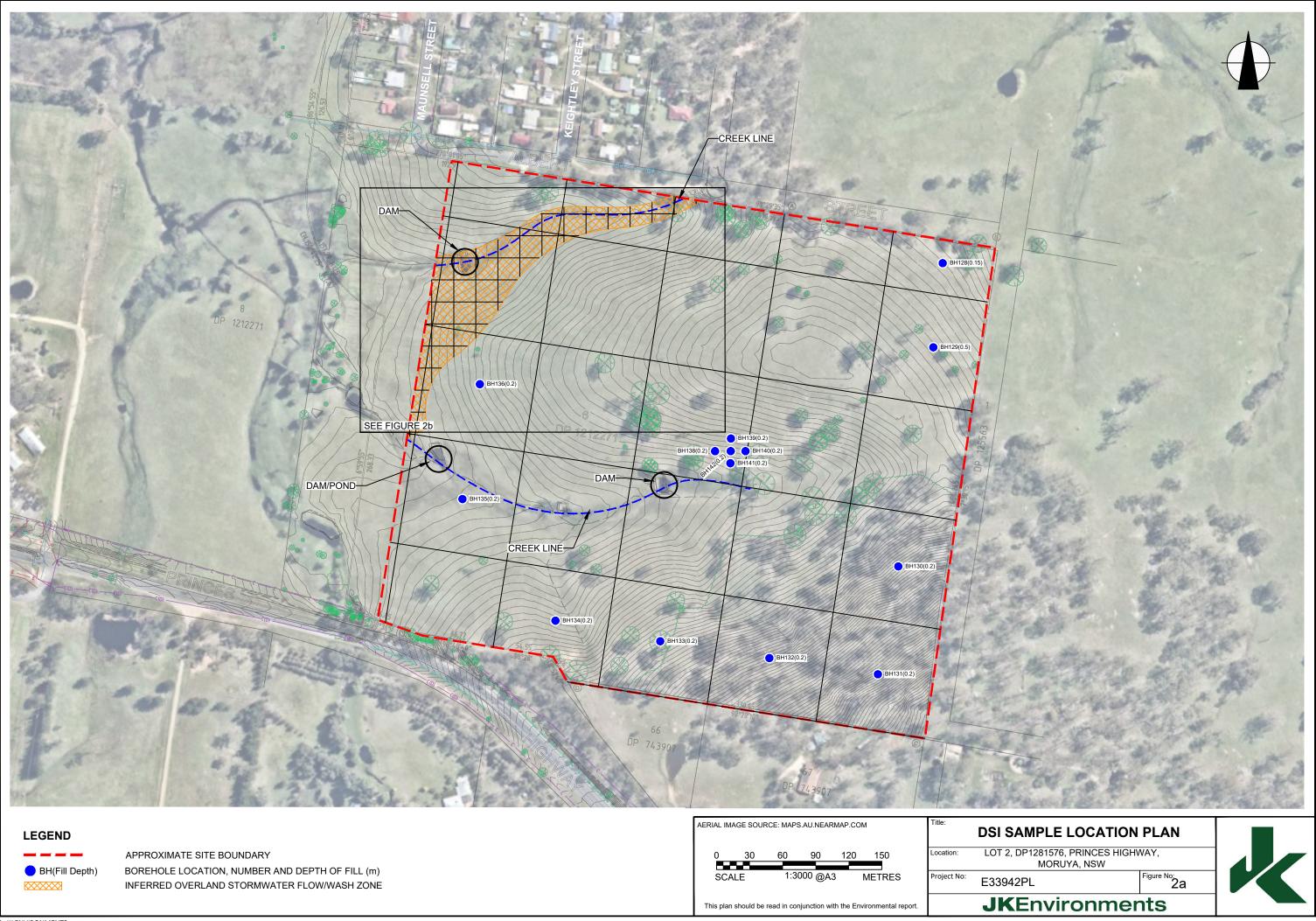
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

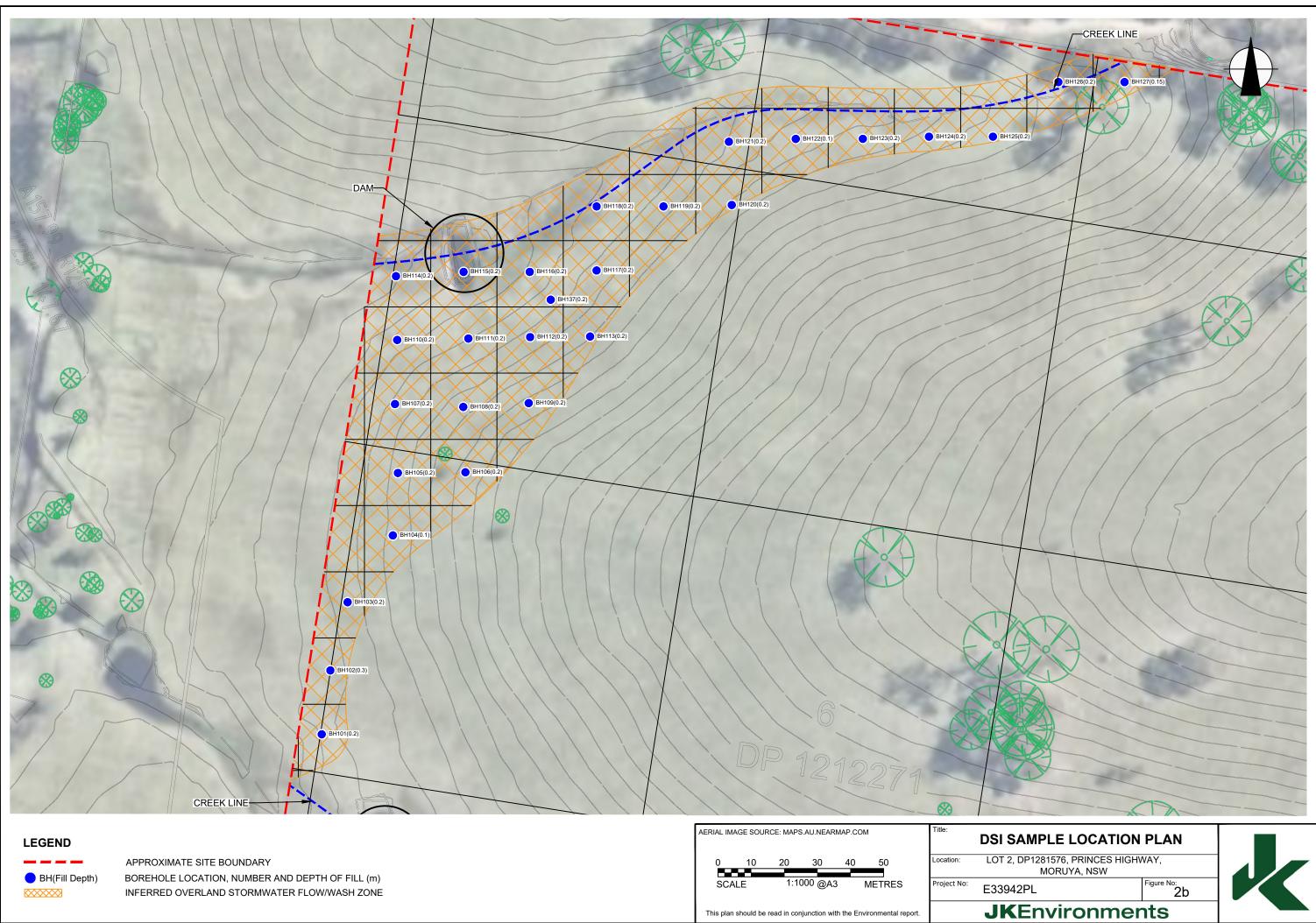
To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures




JKEnvironments

© JK ENVIRONMENTS

This plan should be read in conjunction with the Environmental report.

LEGEND								DSIS
	APPROXIMATE SITE BOUNDARY	0 3	-	60 90) 12	0 150	Location:	LOT 2
● BH(Fill Depth)	BOREHOLE LOCATION, NUMBER AND DEPTH OF FILL (m) INFERRED OVERLAND STORMWATER FLOW/WASH ZONE	SCALE		1:3000 (@A3	METRES	Project No:	E3394
		This plan shoul	ld be read	d in conjuncti	on with the	Environmental report.		JK

Appendix B: Site Information and Site History

Land Title Records

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

Address: - Princes Highway, Moruya

Description: - Lot 2 D.P. 1281576 (part of the land in Folio Identifier 6/1212271)

As regards the parts numbered (1), (2) & (3) on the attached Cadastral Records Enquiry Report

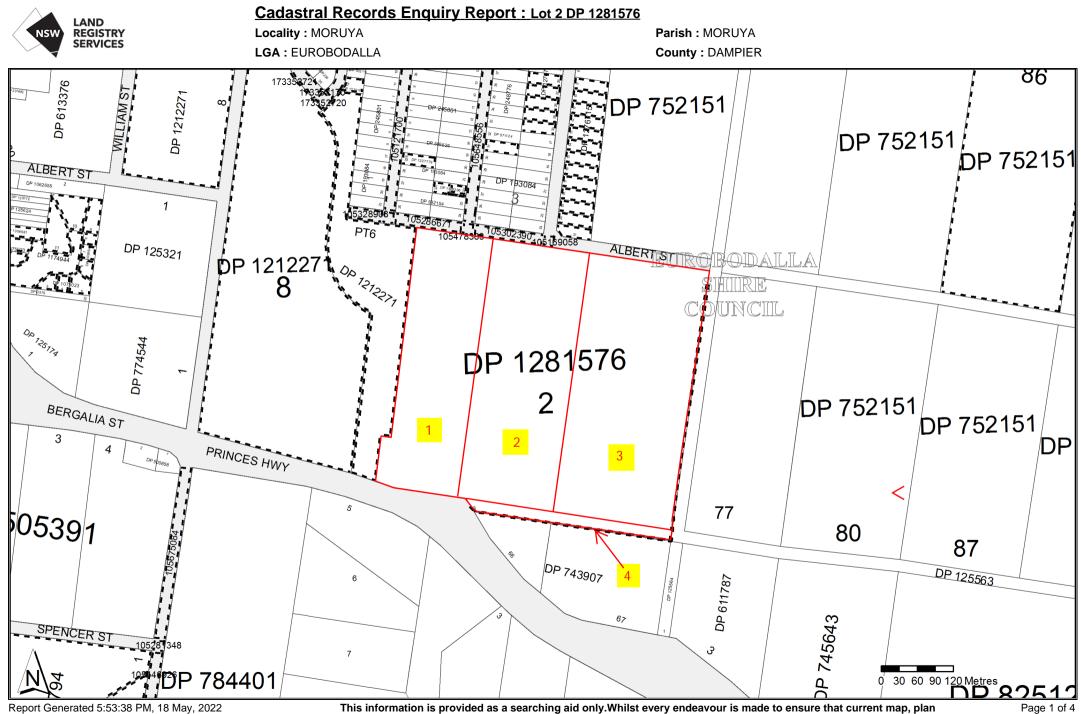
Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
22.03.1902 (1902 to 1941)	Alfred Leggo Jeffery (Farmer)	Book 708 No. 826
06.09.1941 (1941 to 1971)	Noel Llewellyn Jeffery (Farmer)	Book 1901 No. 747
19.08.1971 (1971 to date)	# Patent Development Pty Limited	Book 3023 No. 477 Then 54/1107020, 65/752151 & 68/752151 Then 3/1164518 Now 6/1212271

Denotes current registered proprietor

As regards the part numbered (4) on the attached Cadastral Records Enquiry Report

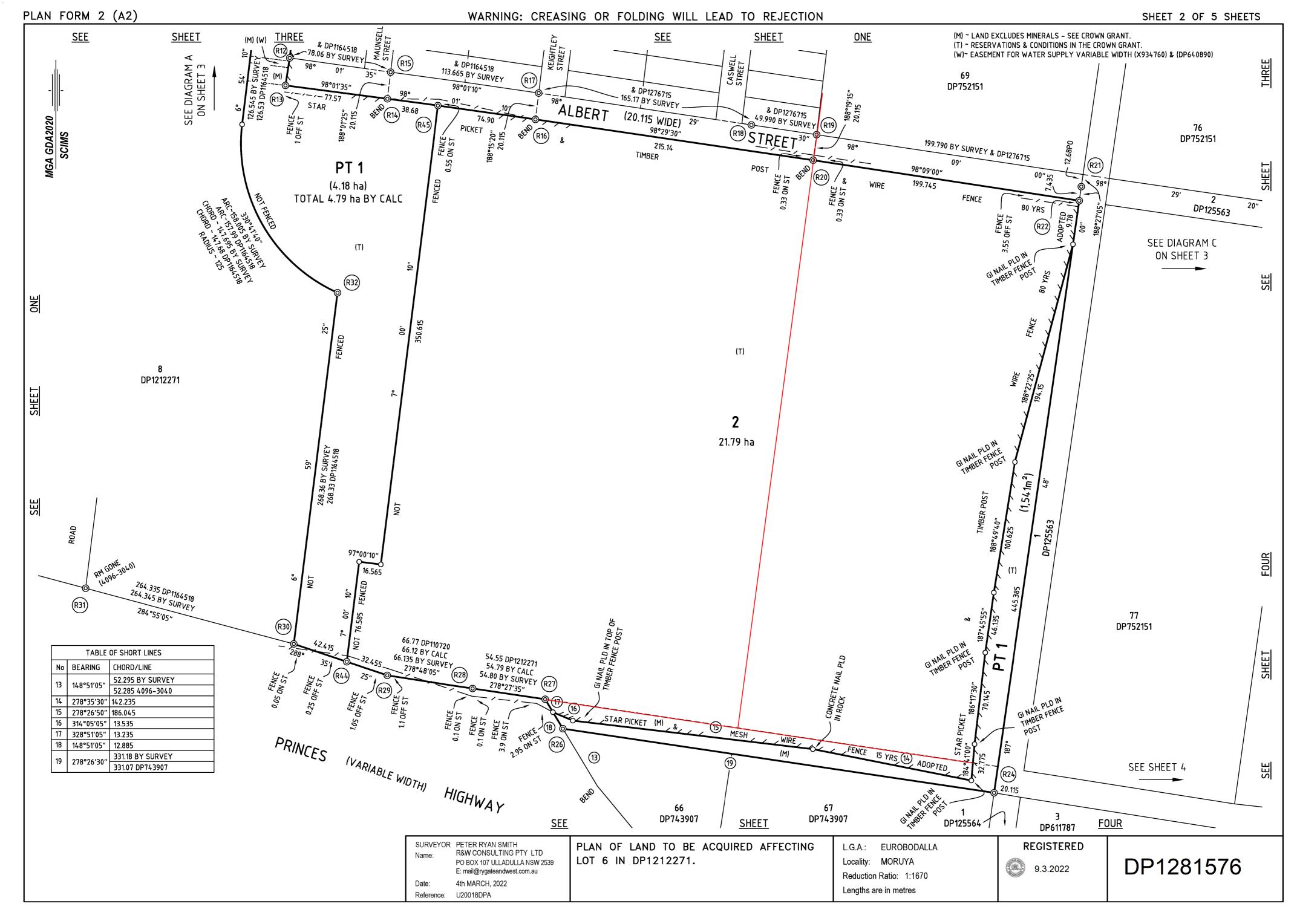
Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
	This parcel of land was formerly a Crown Road subsequently closed by notification published in Government Gazette dated 26 th September 1958	
		Volume 7745 Folio 39
06.08.1959		Then
(1959 to 1971)	Noel Llewellyn Jeffery (Farmer)	Volume 11602 Folio 139
(1959 to 1971)		Now
		Volume 11770 Folio 138
10.00.1071		Volume 11770 Folio 138
19.08.1971	# Patent Development Pty Limited	Then
(1971 to date)		1/553273

Denotes current registered proprietor


Leases: - NIL

Easements: - NIL affecting the subject land.

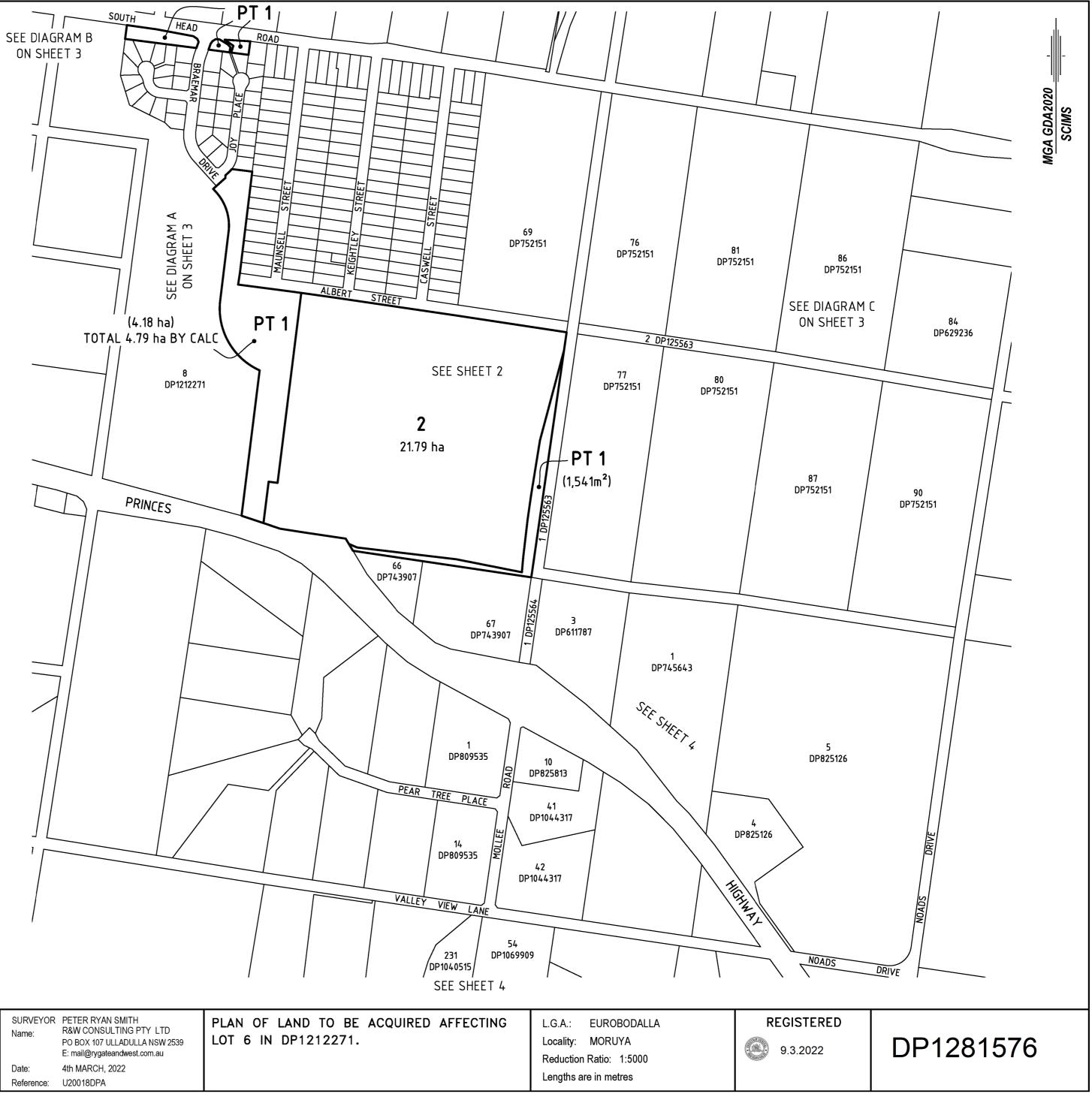
Yours Sincerely, Mark Groll 18 May 2022


Email: mark.groll@infotrack.com.au

1

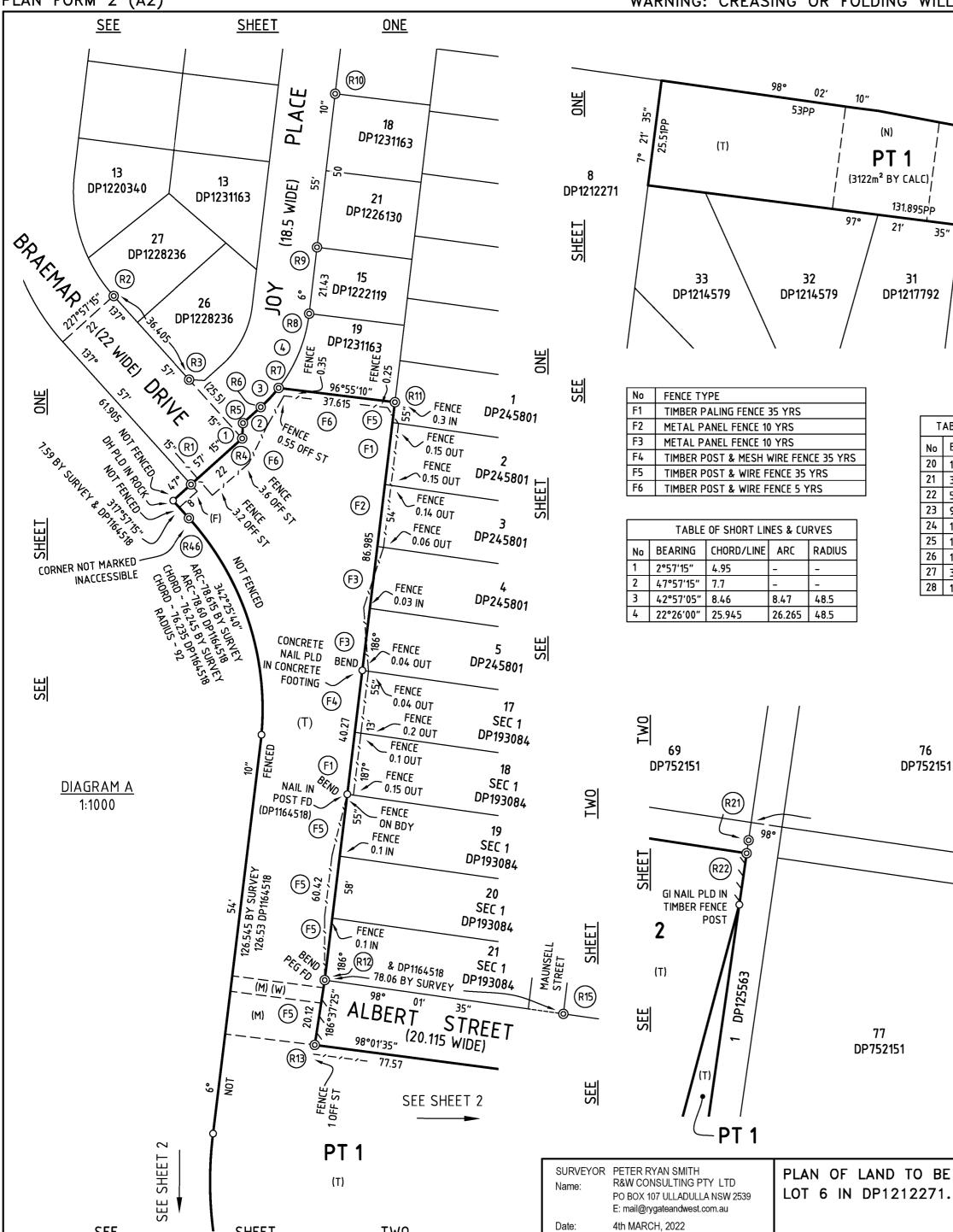
Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps



9

оf


	ORM 2 (A2) REFERENCE M	ARK TABLE
RM	REFERENCE	REFERENCE
R1	215°37′55″ ~ 6.07	RM DH&W (DP1212271) (ADD. REF. BY ME)
R2	47°57′15″ ~ 5.785 & 15.77	RM DH&W'S FD (DP1212271)
R3	47°57'15" ~ 5.615 & 16.09	RM DH&W'S FD (DP1212271)
R4	77°00'55" ~ 5.77	RM DH&W FD (DP1212271)
114	52°33′55″ ~ 16.12	RM DH&W FD (DP1212271)
R5	137°57′15″ ~ 5.335 & 13.17	RM DH&W'S FD (DP1212271)
R6	137°57'15" ~ 5.15 & 13.425	RM DH&W'S FD (DP1212271)
R7	117°32′55″ ~ 5.465	RM DH&W FD (DP1212271)
R8	96°55'10" ~ 5.8 & 12.995	RM DH&W'S FD (DP1212271)
R9	101°42′55″ ~ 5.12	RM DH&W FD (DP1226130)
R10	88°53'15" ~ 5.175 & 13.5	RM DH&W'S FD (DP1212271)
D44	152°13′55″ ~ 9.205	SSM 128963 FD (DP1212271)
R11	89°23'55" ~ 1.1	RM GIP FD (DP1164518)
R12	15°29'55" ~ 5.16	RM GIP FD (DP1164518)
R13	258°55'20" ~ 0.76	RM GIP PLD
R14	106°44'36" ~ 9.906	PM 67885 PLD
D1E	97°36'55" ~ 0.685	RM GIP FD (DP1164518)
R15	98°00'55" ~ 1	RM GIP FD (DP592154)
R16	35°45'35" ~ 21.035 192°33'12" ~ 19.172	PM 67885 FD (DP1164518) PM 67886 PLD
RIU	237°12′05″ ~ 5.78	RM DH&W FD (DP124674)
R17	237°12'20" ~ 5.78	RM DH&W FD BY ME
	69°51′50″ ~ 4.86	RM DH&W FD (DP1276715)
R18	56°49'10" ~ 5.08	SSM 192012 (DP1276715)
R19	91°49′50″ ~ 1.415	RM GIP FD (DP1276715)
R20	152°06'35" ~ 1.63	RM GIP PLD
R21	188°26′50″ ~ 1	RM GIP FD 0.2 DEEP (DP638352)
R22	178°25'30" ~ 1.07	RM GIP PLD
R23	99°39'15" ~ 1	RM GIP FD (DP638352)
R24	160°44′20″ ~ 3.59	RM GIP PLD
R25	248°46'15" ~ 1	RM GIP FD (DP717117)
R26	30°36'45" ~ 9.24	RM GIP PLD
R27	3°17'00" ~ 5.955	RM GIP PLD
R28	358°12'30" ~ 0.65	RM GIP PLD
D20	13°41'55" ~ 0.46	RM CB FD DISTUBERD 0.2 DEEP (4096-304
R29	32°54'25" ~ 0.465	RM CB FD DISTUBERD 0.2 DEEP BY ME
R30	16°45'05" ~ 0.455	RM CB FD 0.3 DEEP (4096-3040)
R31	108°48'30" ~ 16.375	RM DH&W FD (DP1164518)
R32	186°59′45″ ~ 1	RM GIP FD (DP1164518)
R33	210°19′55" ~ 0.455	RM CB FD 0.2 DEEP (4096-3040)
R34	129°18′15" ~ 5.23	RM GIP FD 0.4 DEEP (DP809535)
R35	193°26'25" ~ 1	RM GIP FD 0.3 DEEP (DP809535)
R36	5°02'25" ~ 0.495	RM GIP FD 0.4 DEEP (DP809535)
	189°20'05" ~ 0.5	RM GIP FD (DP250861)
R37	144°07'05" ~ 1.74	SSM 92468 FD (DP1044317)
	143°14'00" ~ 1.735	SSM 92468 FD BY ME
R38	70°29'05" ~ 0.69	RM GIP FD 0.4 DEEP (DP825813)
R39	208°30'45" ~ 1	RM GIP FD 0.3 DEEP (DP825813)
	285°21'35" ~ 5.53	PM 73714 FD (DP825813)
R40	210°09'35" ~ 0.455	RM CB FD (4096-3040)
R41	48°30'25" ~ 0.455	RM GIP FD (4096-3040)
R42	281°37′15″ ~ 1	RM GIP FD (DP717117)
R43	52°39'50" ~ 0.455	RM CB FD (4096-3040)
R44 R45	16°13'15" ~ 0.645 182°04'35" ~ 1.91	RM GIP PLD RM GIP PLD
11+2	161 66 40 201	

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

URVEYOR ame:	PETER RYAN SMITH R&W CONSULTING PTY LTD PO BOX 107 ULLADULLA NSW 2539 E: mail@rygateandwest.com.au	PLAN OF LAND TO B LOT 6 IN DP121227
ate:	4th MARCH, 2022	
eference:	U20018DPA	

SHEET 1 OF 5 SHEETS

<u>TW0</u>

Reference: U20018DPA

<u>SHEET</u>

<u>SEE</u>

9

(N)

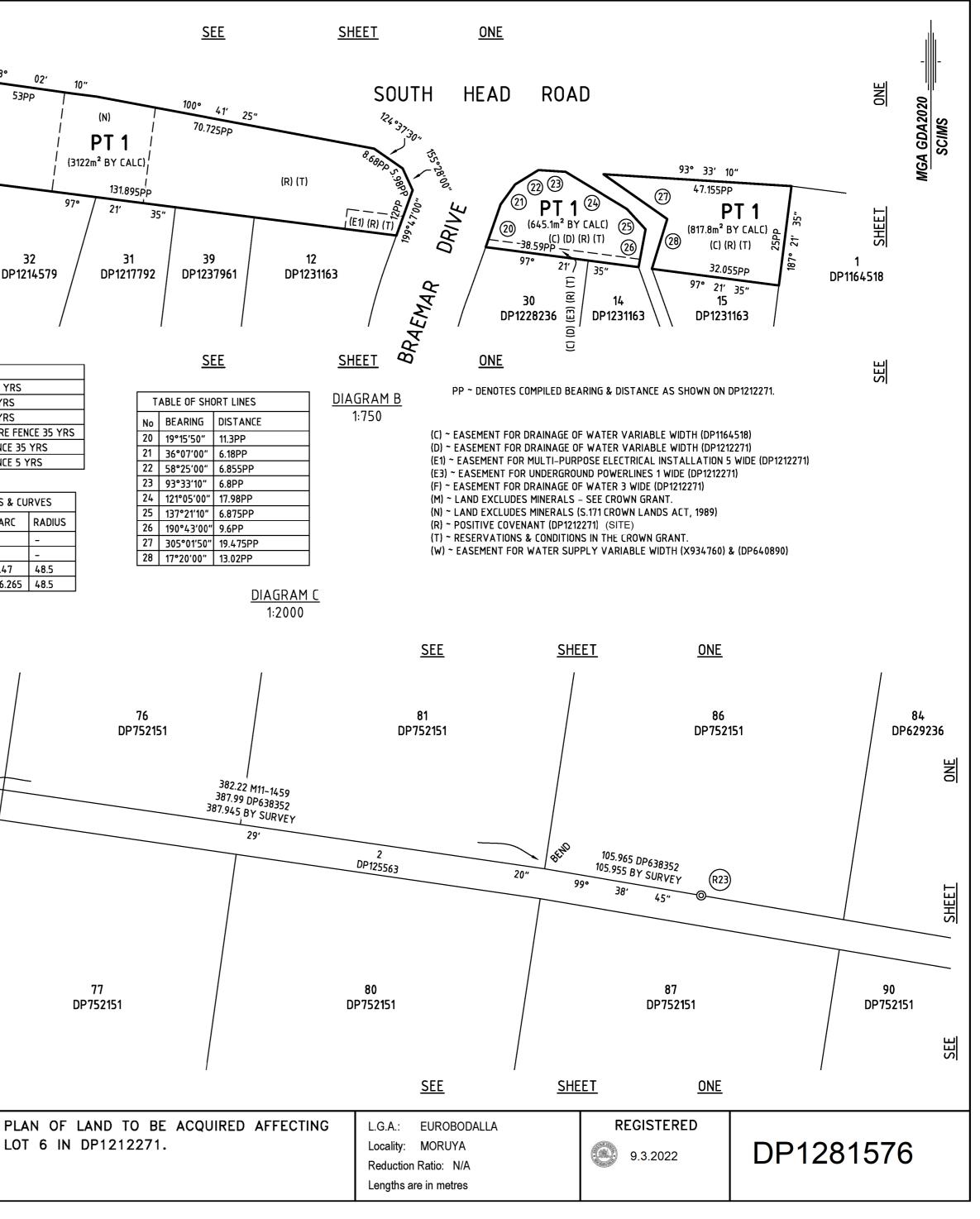
PT 1

(3122m² BY CALC),

21'

131.895PP

31


76

77

DP752151

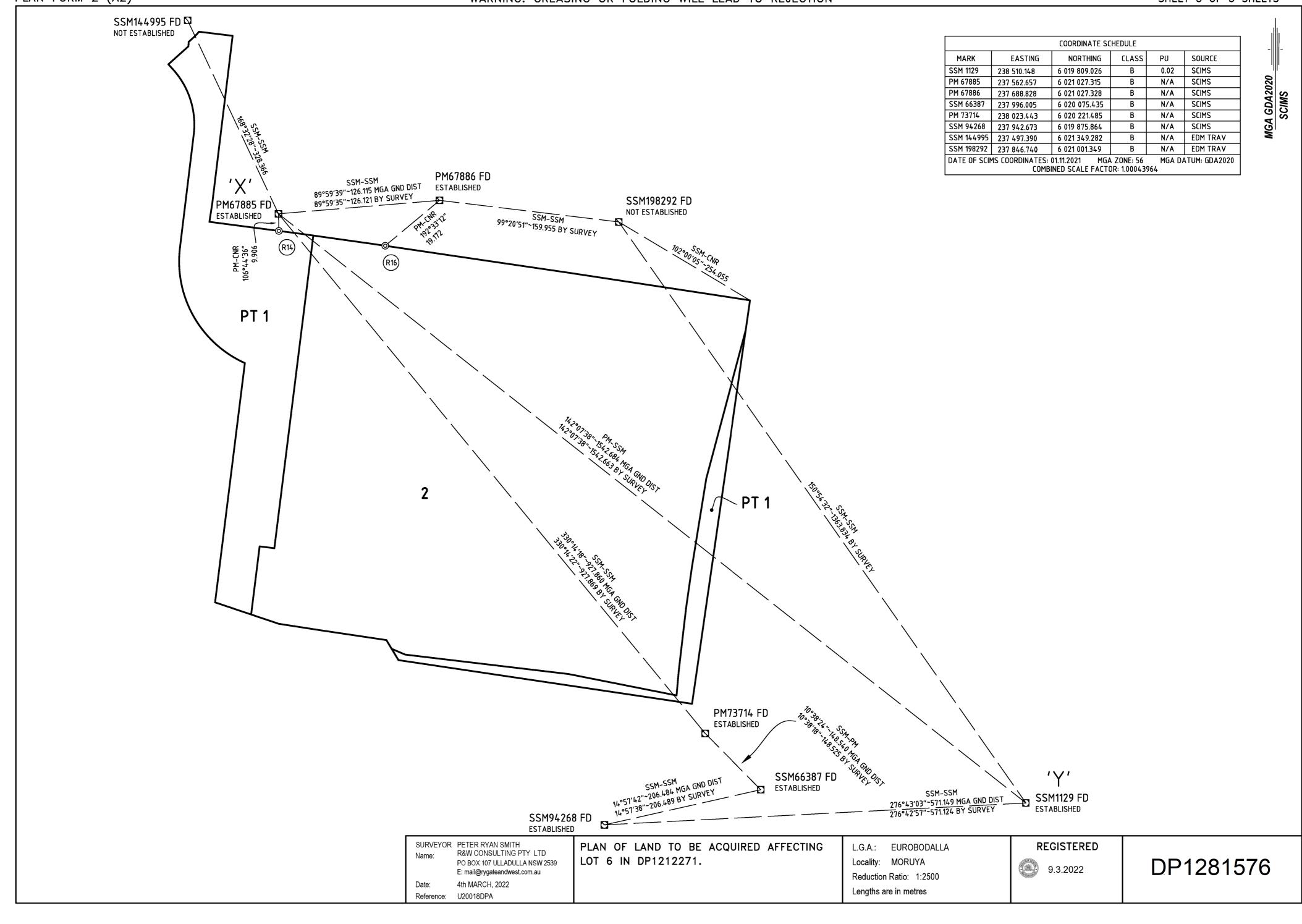

10'

97°

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

9

PLAN FORM 2 (A2)

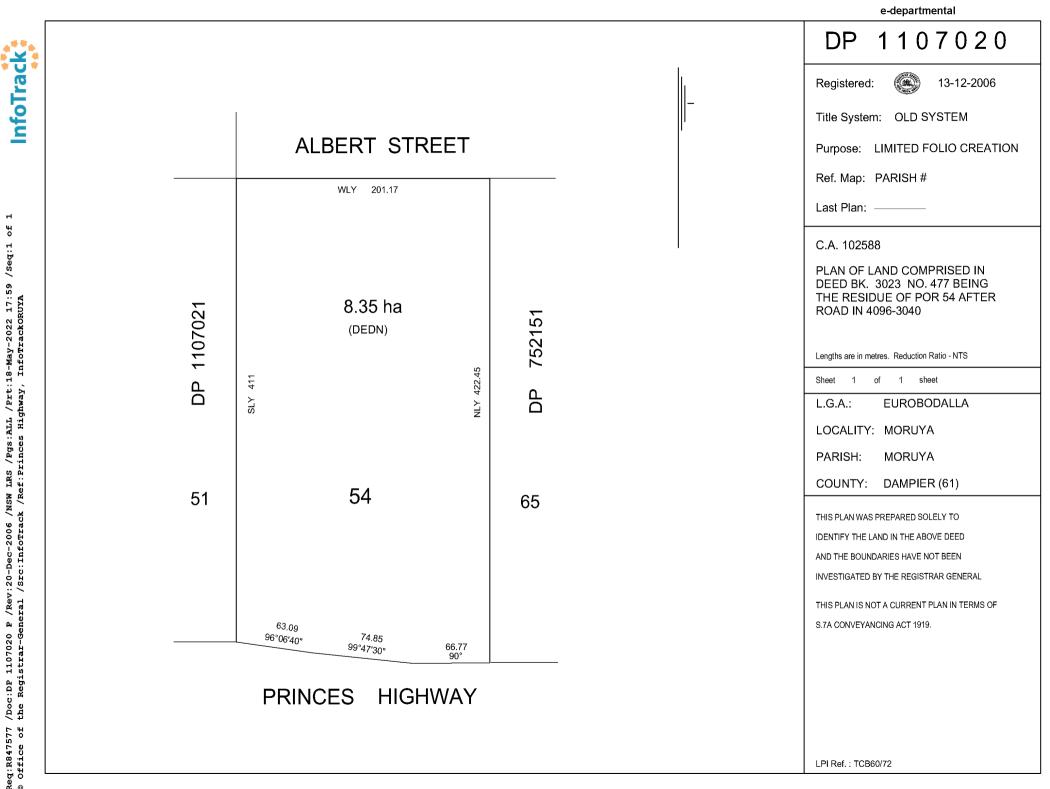

9

Оĥ

/Seg:5

/Doc:DP 1281576 P /Rev:10-Mar-2022 /NSW LRS /Prt:18-May-2022 17:43 the Registrar-General /Src:InfoTrack /Ref:Princes Highway, MORUYA

Reg:R847471 © Office of



SHEET 5 OF 5 SHEETS

MARK	EASTING	NORTHING	CLASS	PU	SOURCE
SSM 1129	238 510.148	6 019 809.026	В	0.02	SCIMS
PM 67885	237 562.657	6 021 027.315	В	N/A	SCIMS
PM 67886	237 688.828	6 021 027.328	В	N/A	scims
SSM 66387	237 996.005	6 020 075.435	В	N/A	SCIMS
PM 73714	238 023.443	6 020 221.485	В	N/A	SCIMS
SSM 94268	237 942.673	6 019 875.864	В	N/A	SCIMS
SSM 144995	237 497.390	6 021 349.282	В	N/A	EDM TRAV
SSM 198292	237 846.740	6 021 001.349	В	N/A	EDM TRAV
DATE OF SCIN	1s coordinates: Comb	01.11.2021 MGA INED SCALE FACTO	ZONE: 56 R: 1.00043		ATUM: GDA2020

Req:R847471 /Doc:DP 1281576 P /Rev:10-Mar-2022 /NSW LRS /Prt:18-May-2 © Office of the Registrar-General /Src:InfoTrack /Ref:Princes Highway

PLAN FORM 6 (2020) WARNING: Creasing or fo	olding will lead to rejection
DEPOSITED PLAN AD	OMINISTRATION SHEET Sheet 1 of 1 sheet(s)
Office Use Only Registered: 9.3.2022 Title System: TORRENS	Office Use Only DP1281576
PLAN OF LAND TO BE ACQUIRED AFFECTING LOT 6 IN DP1212271	LGA: EUROBODALLA Locality: MORUYA Parish: MORUYA County: DAMPIER
Survey Certificate I, PETER RYAN SMITH of R&W CONSULTING a surveyor registered under the Surveying and Spatial Information Act 2002, certify that: *(a) The land shown in the plan was surveyed in accordance with the Surveying and Spatial Information Regulation 2017, is accurate and the survey was completed on, or *(b) The part of the land shown in the plan (*being/*excluding ** PART LOT 1, LOT 2 & CONNECTIONS) was surveyed in accordance with the Surveying and Spatial Information Regulation 2017, the part surveyed is accurate and the survey was completed on, 04/03/2022 the part not surveyed was compiled in accordance with that Regulation, or *(c) The land shown in this plan was compiled in accordance with the Surveying and Spatial Information Regulation 2017. Datum Line: 'X'-Y' Type: *Urban/* Rural The terrain is *Level-Undulating / *Steep-Mountainous. Signature:	Crown Lands NSW/Western Lands Office Approval I,
Plans used in the preparation of survey/compilation. 4096-3040 DP638352 DP825126 DP1212271 M11-1459 DP640890 DP825813 DP1222119 DP124674 DP717117 DP1044317 DP1226130 DP125564 DP743907 DP1065622 DP1276715 DP553273 DP745643 DP1107020 DP125563 DP592154 DP774544 DP1107021 DP611787 DP782574 DP1164518 DP629236 DP809535 DP1165200	Statements of intention to dedicate public roads create public reserves and drainage reserves, acquire/resume land. LOT 2 HEREON IS INTENED TO BE ACQUIRED BY HEALTH ADMINISTRATION CORPORATION ABN 45 100 538 161 Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A

뜅 ALL /Frt:18-May-2022 17:59 /Seg:1 Highway, InfoTrackORUYA /Doc:DF 1107020 P /Rev:20-Dec-2006 /NSW LRS /Pgs:All. the Registrar-General /Src:InfoTrack /Ref:Princes Hig Req:R847577 © Office of

ч

> SEARCH DATE _____ 18/5/2022 5:59PM

FOLIO: 54/1107020

First Title(s): OLD SYSTEM Prior Title(s): BK 3023 NO 477

LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
13/12/2006	DP1107020	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
13/12/2006	CA102588	CONVERSION ACTION	FOLIO CREATED CT NOT ISSUED
19/6/2007	AD197886	DEPARTMENTAL DEALING	EDITION 1
5/4/2011	AG158562	MORTGAGE	EDITION 2
30/6/2011	DP1164518	DEPOSITED PLAN	FOLIO CANCELLED

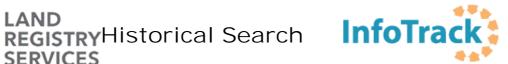
*** END OF SEARCH ***

Princes Highway, MORUYA

> SEARCH DATE _____ 18/5/2022 5:59PM

FOLIO: 65/752151

First Title(s): OLD SYSTEM Prior Title(s): BK 3023 NO 477


LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
21/6/2005	CA94080	CONVERSION ACTION	FOLIO CREATED CT NOT ISSUED
20/9/2005	AB782749	DEPARTMENTAL DEALING	EDITION 1
9/2/2007	AC775879	MORTGAGE	EDITION 2
30/6/2011	DP1164518	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

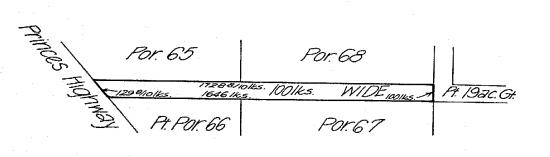
> SEARCH DATE _____ 18/5/2022 5:59PM

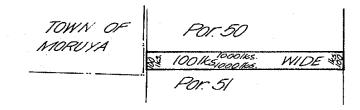
FOLIO: 68/752151

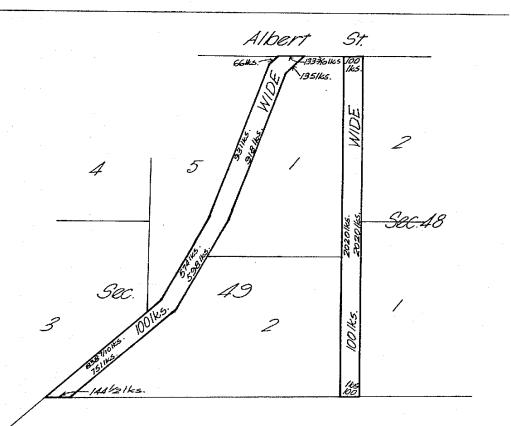
_ _ _ _ _ _ _

First Title(s): OLD SYSTEM Prior Title(s): BK 3023 NO 477

LAND


SERVICES


Recorded	Number	Type of Instrument	C.T. Issue
20/6/2005	CA94042	CONVERSION ACTION	FOLIO CREATED CT NOT ISSUED
20/9/2005	AB782749	DEPARTMENTAL DEALING	EDITION 1
9/2/2007	AC775879	MORTGAGE	EDITION 2
30/6/2011	DP1164518	DEPOSITED PLAN	FOLIO CANCELLED


*** END OF SEARCH ***

Req:R847717 /Doc:CT 11602-139 CT /Rev:11-Jan-2011 /NSW LRS /Pgs:ALL /Prt:18-May-2022 18:37 © Office of the Registrar-General /Src:InfoTrack /Ref:Princes Highway, InfoTrackORUYA 11602139 TITLE ICATE OF NEW SOUTH WALES PROPERTY ACT, 1900. Fol. 139 11602Prior Title (Crown Grant) Vol Vol. 7745 Fol. 39 Edition issued 2-6-1971 တ 60 M196510 7 CANCELLED Fol I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 1602 WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE. Registrar General. I) Vol. ESTATE AND LAND REFERRED TO Estate in Fee Simple in 7 acres 17 perches in the Shire of Eurobodalla Town and Parish of (Page Moruya and County of Dampier being part of 8 acres 17 perches granted by Crown Grant Volume 7745 Folio 39 and shown in the plan hereon. EXCEPTING THEREOUT the minerals reserved by th PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON EXCEPTING THEREOUT the minerals reserved by the Crown Grant. FIRST SCHEDULE NOEL LLEWELLYN JEFFERY, of Moruya, Farmer. General Registrar SECOND SCHEDULE 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. latas General. Registrar

PLAN SHOWING LOCATION OF LAND

Total Area: Tac. Ord. 17 per. Scale: 4 chains to one inch.

M 196510 13.

FIRST SCHEDULE ((continued)	the second second			
REGISTERED PROPRIETOR		INSTRUMENT		-	Cimpeting of
	NATURE	I NUMBER	DATE	ENTERED	Signature of Registrar Genera
This deed is cancelled as to the whole					
New Certificates of Title have issued on 2-2-1972		· · · · · · · · · · · · · · · · · · ·			
for lots in <u>Deposited</u> Plan No. 553273 a; Follows-		144 10			
Lots 1 5 4 Vol. 1177 0 Fol 138 to 141 respectively					· · · · · · · · · · · · · · · · · · ·
BEGISTRAR GENERAL					
KEUISI NAM CINA MA		· · · · · · · · · · · · · · · · · · ·			
				<u></u>	

Req:R847717 © Office of

7 /Doc:CT 11602 f the Registrar

> -139 CT / -General

/Src:

1-Jan-2011 InfoTrack

/NSW LRS /Pgs:ALL /Pr /Ref:Princes Highway,

t:18-May-2022 InfoTrackORUYA

Seq:

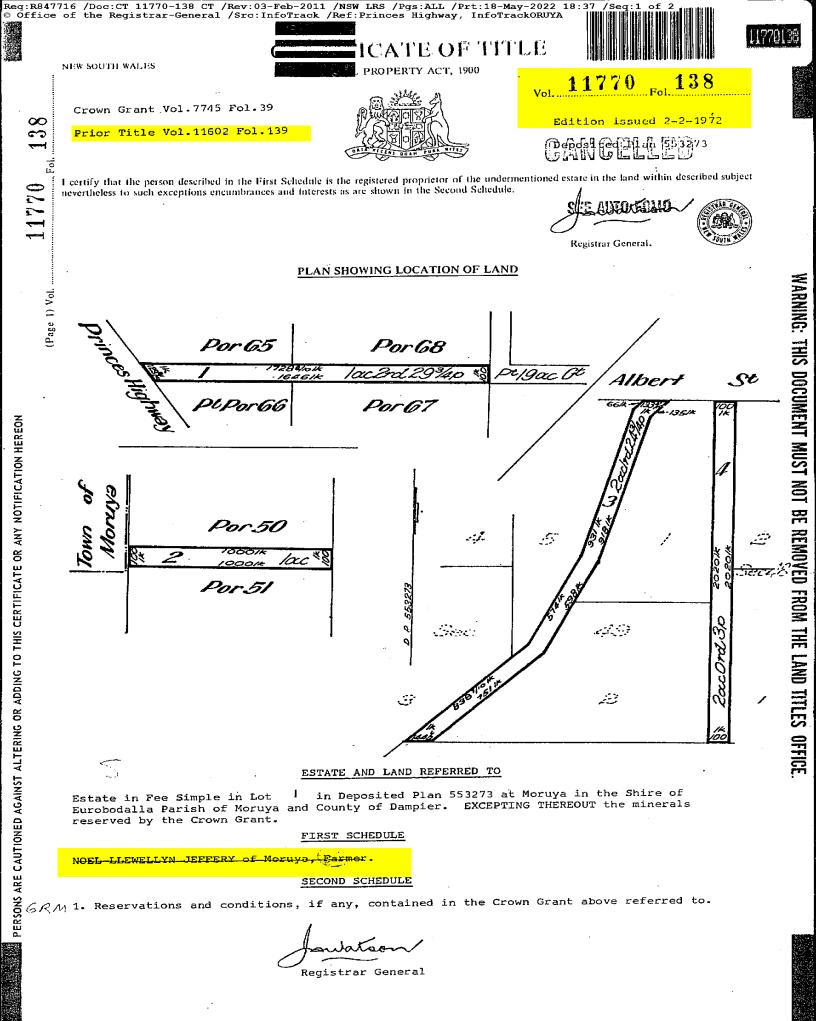
of 4

SECOND SCHEDULE (continued)								
NATURE	INSTRUMENT	DATE	PARTICULARS		Signature of Registrar General	T		
		- Grite			Registran General		CANCELLATION	
						· · · · · · · · · · · · · · · · · · ·	·····	
				· · · · · · · · · · · · · · · · · · ·				
					·	~		
	-						l	
					* Versite and a second state of a second stat			
					· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·							
							1	
Annahan a mada ana an annana annan annan an an an an								·
							[a a a]	
				-			· .	
							······	
	1.00							
· · · · · · · · · · · · · · · · · · ·								ļ
	-							
	· · · · · · ·							
		and the second						·

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

	1.1.1		FIRST SCHEDULE (continued) REGISTERED PROPRIETOR		ILITTOLIN			
				NATUR	INSTRUMEN	I DATE	- ENTERED	Signature Registrar Ger
				1				Registrar Ger
		· · · · · · · · · · · · · · · · · · ·					1.	
	-							···
						·····		
	and a definition of the control of the control of the former				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	and the second second second second				-			
							The of the same is a part of	
						·····		······
				· · · · · · · · · · · · · · · · · · ·		New 2000		
						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
							· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
			a second a s				· · · · · · · · · · · · · · · · · · ·	······································
				······				
					-	······································		
			· · · · · · · · · · · · · · · · · · ·		······································	· ····································		
· · · ·								
			SECOND SCHEDULE (continued)	1				
NATURE	INSTRUMENT I NUMBER	DATE	PARTICULARS	ENTERED	Signature of	I		
				ENTERED	Signature of Registrat General		CANCELLATION	
	1 .	1			1		,	
		······································		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
······				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	
· · · · · · · · · · · · · · · · · · ·				• • • • • • • • • • • • • • • • • • •				
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·								

Reg:R847717 /Doc:CT 11602-139 CT /Rev:11-Jan-2011 /NSW LRS /Pgs:ALL /Prt:18-May-2022 18:37 © Office of the Registrar-General /Src:InfoTrack /Ref:Princes Highway, InfoTrackORUYA


/Seq:4

of 4

•

14.184

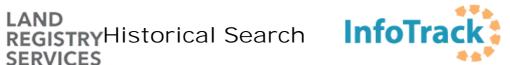
NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

FIRST SCHEDUL	E (continued)					muer
REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signature of Registrar General	1
Ent Development Pty. Limited	Transfor			7.4.1972		- -
						-
SEE VIND FOLIO						-
<u> </u>	······································				-	
						-

/NSW LRS /Pgs:ALL /Prt:18-May-2022 18: /Ref:Princes Highway, InfoTrackORUYA

37


P a

N

				SECOND SCHEDULE (continued)			
		INSTRUMENT				Signature of	······································
	NATURE	NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION
ļ							
	, ,						
			,,				
	·						
:							
<u></u>	<u>`</u>						
pages)	· · · · · · · · · · · · · · · · · · ·	<u>.</u>					
2							
2 of							
ae.							
(Page							

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

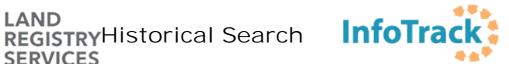
> SEARCH DATE _____ 18/5/2022 6:36PM

FOLIO: 1/553273

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11770 FOL 138

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
25/7/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
9/2/2007	AC775879	MORTGAGE	EDITION 1
30/6/2011	DP1164518	DEPOSITED PLAN	FOLIO CANCELLED


*** END OF SEARCH ***

Princes Highway, MORUYA

LAND

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE _____ 18/5/2022 5:49PM


FOLIO: 3/1164518

	First	- Title(s):	OLD SYSTEM	VOL 7745 FOL	39
			1-2/553273	50/752151	
				68/752151	
			2-3/33/758710	54/1107020	
			-51/1107021		
Recorde	ed	Number	Type of Instrumen	t	C.T. Issue
20/6/20			DEPOSITED PLAN	_	FOLIO CREATED
30/0/20	JII	DP1104516	DEPOSITED PLAN		EDITION 1
13/8/20	012	AH169050	CAVEAT		
4/9/20	013	АН994726	CAVEAT		
26/2/20	014	AI409055	CAVEAT		
19/3/20	014	AI451464	CAVEAT		
28/5/20	014	AI434038	APPLICATION FOR PR OF LAPSING NOTICE	REPARATION	
10/6/20	014	AI648784	CAVEAT		
13/8/20	014	AI729119	APPLICATION FOR PL OF LAPSING NOTICE	REPARATION	
20/11/20	014	AJ51773	WITHDRAWAL OF CAV	EAT	
30/12/20	014	AJ140511	WITHDRAWAL OF CAV	EAT	
15/1/20	015	AJ172644	WITHDRAWAL OF CAVE	EAT	
15/1/20	015	AJ173978	DISCHARGE OF MORT	GAGE	
15/1/20	015	AJ173979	DISCHARGE OF MORT	GAGE	
15/1/20	015	AJ173980	DISCHARGE OF MORT	GAGE	
15/1/20	015	AJ173981	DISCHARGE OF MORT	GAGE	
15/1/20	015	AJ173983	MORTGAGE		EDITION 2
22/9/20	015	DP1212271	DEPOSITED PLAN		FOLIO CANCELLED RESIDUE REMAINS
9/2/20)22	AR874100	DEPARTMENTAL DEAL	ING	

*** END OF SEARCH ***

> SEARCH DATE _____ 18/5/2022 5:42PM

FOLIO: 6/1212271

SERVICES

	Firs	t Title(s):	OLD SYSTEM	THIS FOLIO	
	Prio	r Title(s):	3/1164518	-1/1165200-	
Record	.ed	Number	Type of Instrumer	ıt	C.T. Issue
22/9/2	015	DP1212271	DEPOSITED PLAN		FOLIO CREATED EDITION 1
9/2/2	022	AR874100	DEPARTMENTAL DEAI	lING	EDITION 2
9/3/2	022	DP1281576	DEPOSITED PLAN		EDITION 3
29/3/2	022	AS363	DEPARTMENTAL DEAI	lING	EDITION 4

*** END OF SEARCH ***

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 6/1212271

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
18/5/2022	5:42 PM	4	29/3/2022

LAND

LOT 6 IN DEPOSITED PLAN 1212271 AT MORUYA LOCAL GOVERNMENT AREA EUROBODALLA PARISH OF MORUYA COUNTY OF DAMPIER TITLE DIAGRAM DP1212271

FIRST SCHEDULE

PATENT DEVELOPMENT PTY LIMITED

SECOND SCHEDULE (16 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) WITHIN THE PART(S) SHOWN SO INDICATED IN THE TITLE DIAGRAM
- 2 LAND EXCLUDES MINERALS (S.171 CROWN LANDS ACT 1989) WITHIN THE PART SHOWN SO INDICATED IN THE TITLE DIAGRAM
- 3 LAND EXCLUDES MINERALS WITHIN THE PART SHOWN SO INDICATED IN THE TITLE DIAGRAM SEE CROWN GRANT
- 4 X934760 EASEMENT FOR WATER SUPPLY AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 5 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J OF THE REAL PROPERTY ACT, 1900. ENTERED 18-6-2005 AS REGARDS THE PART IN BK. 3023 NO. 477
- 6 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J OF THE REAL PROPERTY ACT, 1900. ENTERED 20-6-2005 AS REGARDS THE PART IN BK 3023 NO 477
- 7 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J OF THE REAL PROPERTY ACT, 1900. ENTERED 21-6-2005 AS REGARDS THE PART IN BK 3023 NO 477
- 8 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J OF THE REAL PROPERTY ACT, 1900. ENTERED 13-12-2006 AS REGARDS THE PART IN BK 3023 NO 477
- 9 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- 10 AJ173983 MORTGAGE TO BRAEMAR VISTA PTY LTD
- 11 DP1164518 EASEMENT FOR DRAINAGE OF WATER VARIABLE WIDTH AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM

12 DP1212271 EASEMENT FOR DRAINAGE OF WATER VARIABLE WIDTH AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE

END OF PAGE 1 - CONTINUED OVER

Princes Highway, MORUYA

PRINTED ON 18/5/2022

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 6/1212271

PAGE 2

SECOND SCHEDULE (16 NOTIFICATIONS) (CONTINUED)

DIAGRAM

- 13 DP1212271 EASEMENT FOR MULTI PURPOSE ELECTRICAL INSTALLATION 5 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 14 DP1212271 EASEMENT FOR UNDERGROUND POWERLINES 1 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 15 DP1212271 POSITIVE COVENANT

16 DP1212271 EASEMENT FOR DRAINAGE OF WATER 3 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM-

NOTATIONS

6219976 NOTE: EASEMENT CREATED BY X934760 VESTED IN EUROBODALLA SHIRE COUNCIL GAZETTE 9.4.1999 FOL.2712

DP1281576 PLAN OF ACQUISITION

UNREGISTERED DEALINGS: PP DP1279410.

*** END OF SEARCH ***

Princes Highway, MORUYA

PRINTED ON 18/5/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

SafeWork NSW Records

Harry Leonard

From: Sent: To: Subject:	Licensing <licensing@safework.nsw.gov.au> Wednesday, 8 June 2022 3:36 PM Harry Leonard SafeWork NSW: 00704236 –Site Search application – Result not found 00D281hl6J5004a8JY1m:ref]</licensing@safework.nsw.gov.au>	[ref:_
Follow Up Flag: Flag Status:	Follow up Flagged	

Security Classification: Sensitive Personal Please do not amend the subject line of this email

Dear Harry

Re: Site Search for Schedule 11 Hazardous Chemicals on premises Application – Result not found

I refer to your application for a Site Search for Schedule 11 Hazardous Chemicals on premises for the following site: Lot 6 Princes Highway Moruya NSW 2537.

A search of the records held by SafeWork NSW has not located any records pertaining to the above-mentioned premises.

If you have any further information or if you have any questions, please use one of the following options, quoting the SafeWork NSW enquiry reference number: 00704236

- Email: <u>licensing@safework.nsw.gov.au</u>
- Phone: 13 10 50

Kind regards

Gabriela Draper Licensing Representative SafeWork NSW | Better Regulation Division Department of Customer Service p- 13 10 50 e- licensing@safework.nsw.gov.au | www.customerservice.nsw.gov.au Level 3, 32 Mann Street, Gosford, NSW 2250

We are always looking for ways that we can improve our services. You may be contacted by email in the next few weeks to complete a short survey and provide us with your feedback on what we did

Appendix C: Laboratory Results Summary Tables

Detailed Site Investigation (DSI) Lot 2 DP1281576, Princes Highway, Moruya, NSW E33942PL

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC:	Ambient Background Concentration	ppm:	Parts per million
ACM:	Asbestos Containing Material	PCBs:	Polychlorinated Biphenyls
AF:	Asbestos Fines	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ANZG	Australian and New Zealand Guidelines	PQL:	Practical Quantitation Limit
B(a)P:	Benzo(a)pyrene	RS:	Rinsate Sample
CEC:	Cation Exchange Capacity	RSW:	Restricted Solid Waste
CRC:	Cooperative Research Centre	SAC:	Site Assessment Criteria
CT:	Contaminant Threshold	SCC:	Specific Contaminant Concentration
EILs:	Ecological Investigation Levels	TB:	Trip Blank
ESLs:	Ecological Screening Levels	TCA:	1,1,1 Trichloroethane (methyl chloroform)
FA:	Fibrous Asbestos	TCE:	Trichloroethylene (Trichloroethene)
GSW:	General Solid Waste	TCLP:	Toxicity Characteristics Leaching Procedure
HILs:	Health Investigation Levels	TS:	Trip Spike
HSLs:	Health Screening Levels	TRH:	Total Recoverable Hydrocarbons
kg/L	kilograms per litre	UCL:	Upper Level Confidence Limit on Mean Value
NA:	Not Analysed	USEPA	United States Environmental Protection Agency
NC:	Not Calculated	VOCC:	Volatile Organic Chlorinated Compounds
NEPM:	National Environmental Protection Measure	WHO:	World Health Organisation
NHMRC:	National Health and Medical Research Council		
NL:	Not Limiting		
NSL:	No Set Limit		
OCP:	Organochlorine Pesticides		
OPP:	Organophosphorus Pesticides		
PAHs:	Polycyclic Aromatic Hydrocarbons		
0//			

%w/w: weight per weight

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

Site specific ABC values for specific metals have been adopted.

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).

for old suburbs with low traffic have been quoted). Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						HEAVY	METALS				F	PAHs			ORGANOCH	LORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
All data in mg/kg unless sto	tated otherwis	е	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic PAHs	HCB	Endosulfan	Methoxychlor	r Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria (S	SAC)		100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detecte
Sample Reference	Sample Depth	Sample Description																				
BH101	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH101 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH102	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	5	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	2	5	<0.1	<1	5	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	3	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	1	6	<0.1	<1	3	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	00.1	Fill: Silty sandy clay	<4	<0.4	1	1	7	<0.1	<1	7	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	2	<0.1	<1	2	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	2	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
	0-0.1	Fill: Silty clayey sand	<4	<0.4	<1	<1	4	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	7	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	_	<1		<0.1	<1		<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	<4 <4	<0.4	2	<1 3	4	<0.1	1	4	<0.05 <0.05	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	3 1	<1	4	<0.1	<1	4	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	4	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty clayey sand	<4	<0.4	2	<1	5	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	6	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	4	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	5	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	5	<0.1	<1	3	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
	0-0.1	Fill: Silty clayey sand	<4	<0.4	1	1	8	<0.1	<1	6	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH124	0 -0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	5	<0.1	<1	4	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH124	0.5 - 0.7	Silty clayey sand	<4	<0.4	4	<1	2	<0.1	2	2	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH125	0-0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	5	<0.1	1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH126	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	<1	6	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH127	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	2	4	<0.1	1	10	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH128	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	2	<0.1	<1	1	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH128 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	2	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH128	0.3 - 0.5	Silty sandy clay	<4	<0.4	3	<1	4	<0.1	1	3	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH129	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH130	0-0.1	Fill: Silty clay	<4	<0.4	6	4	5	<0.1	3	11	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH131	0-0.1	Fill: Silty sandy clay	<4	<0.4	4	3	5	<0.1	2	9	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH132	0-0.1	Fill: Silty sandy clay	<4	<0.4	5	4	6	<0.1	3	9	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0.3 - 0.5	Silty sandy clay	<4	<0.4	14	8	5	<0.1	8	21	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.1	Fill: Silty sandy clay	<4	<0.4	3	3	6	<0.1	2	14	0.06	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	3	2	4	<0.1	2	11	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0.3 - 0.5	Silty sandy clay	<4	<0.4	4	<1	3	<0.1	2	6	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	2	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	7	<0.1	<1	5	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	7	<0.1	<1	5	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
	0-0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	5	<0.1	<1	3	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
	0.4 - 0.6	Silty clayey sand	<4	<0.4	4	<1	3	<0.1	2	2	< 0.05	<0.5	NA 10.1	NA 10.1	NA 10.1	NA	NA	NA	NA	NA	NA 10.1	NA
SDUP101	-	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP102	-	Fill: Silty sandy clay	<4	<0.4	1	<1	5	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP108 · · · · · · · · · · · · · · · · · · ·	-	Fill: Silty clay Fill: Silty sandy clay	<4 <4	<0.4	8	4 <1	6 3	<0.1	4 <1	14 2	<0.05 <0.05	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	NA
100F103 .	-	Fill: Silly sandy clay	<4	<0.4	1	<u><1</u>	3	<u.1< td=""><td><1</td><td>2</td><td><0.05</td><td><u.5< td=""><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>NA</td></u.5<></td></u.1<>	<1	2	<0.05	<u.5< td=""><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>NA</td></u.5<>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Total Number of Sample	es		51	51	51	51	51	51	51	51	51	51	46	46	46	46	46	46	46	46	46	37
			<pql< td=""><td><pql< td=""><td>14</td><td>8</td><td>12</td><td><pql< td=""><td>8</td><td>21</td><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>14</td><td>8</td><td>12</td><td><pql< td=""><td>8</td><td>21</td><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	14	8	12	<pql< td=""><td>8</td><td>21</td><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	8	21	0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected

TABLE S2 SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

Detailed Site Investigation (DSI) Lat 2 DP1281576, Princes Highway, Moruya, NSW E33942PL

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measuremen
L - Envirolab	Services				25	50	0.2	0.5	1	1	1	ppm
	Land Use Cat	egory					HSL-A/B: LO	W/HIGH DENSITY	RESIDENTIAL			
Sample	Sample	Sample Description	Depth	Soil Category								
Reference BH101	Depth 0-0.1	Fill: Silty sandy clay	Category Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH101 -					-15	-30	-0.1	40.5	~		~	0
LAB DUP]	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH102	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH103	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH104	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH105	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH106	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH107 BH108	0-0.1	Fill: Silty sandy clay	Om to <1m Om to <1m	Sand	<25	<50 <50	<0.2	<0.5 <0.5	4	<1	<1	0
BH108 BH109	0.01	Fill: Silty sandy clay Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH105 BH110	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH110 -					-13	-30	10.2	-0.5	~4	~*	~	0
[LAB DUP]	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH111	0-0.1	Fill: Silty clayey sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH112	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH113	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH114	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH115	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH116	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH117	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	4	<1	<1	0
BH118 BH119	0-0.1	Fill: Silty clayey sand	Om to <1m Om to <1m	Sand	<25	<50	<0.2	<0.5 <0.5	4	<1	<1	0
BH119 BH120	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	0m to <1m 0m to <1m	Sand	<25	<50	<0.2	<0.5	4	<1	<1	0
BH120 BH121	0-0.1	Fill: Silty sandy clay Fill: Silty clayey sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH121 BH122	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH122 -	0 - 0.1		0m to <1m	Sand							1	
[LAB_DUP]	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH123	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH124	0 -0.1	Fill: Silty clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH124	0.5 - 0.7	Silty clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH125	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH126	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH127 BH128	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH128 BH128 -	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
[LAB DUP]	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
RH128	03-05	Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH129	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH130	0-0.1	Fill: Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH131	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH132	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH132	0.3 - 0.5	Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH133	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH134	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH134	0.3 - 0.5	Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH135	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH136 BH136 -	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
ILAB DUP1	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH137	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH137 BH137	0.4-0.6	Silty clayey sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH138	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH139	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH140	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH141	0-0.1	Fill: Silty clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH142	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
SDUP101	-	Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP101 -		Fill: Silty sandy clay	0m to <1m	Sand							1	
[LAB_DUP]					<25	NA	<0.2	<0.5	<1	<1	<1	-
SDUP102	-	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	
SDUP108	-	Fill: Silty clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP109		Fill: Silty sandy clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP109 - [LAB_DUP]	-	Fill: Silty sandy clay	0m to <1m	Sand	NA	<50	NA	NA	NA	NA	NA	
)												
fotal Number					57	57	57	57	57	57	57	52
Aaximum Val	ue				<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>
ncentration a ncentration a e guideline co			VALUE Bold									

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C10-C16 (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH101	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101 - [LAB DUP]	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH102	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH105	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH106	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH107	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH108	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH109	0.0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH110	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH110 - [LAB DUP]	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH111	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH112	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH113	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH114	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH115	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH116	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH117	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH118	0-0.1	Fill: Silty clayey sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH119	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH120	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH121	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH122	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH122 - [LAB DUP]	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH123	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH123 BH124	0 -0.1	Fill: Silty clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH124	0.5 - 0.7	Silty clayey sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH124 BH125	0-0.1	Fill: Silty clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH125 BH126	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH127	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH128	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH128 -	0 - 0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
[LAB_DUP] BH128	0.3 - 0.5		0m to <1m	Sand	45	110	0.5	160	55	40	3
BH128 BH129	0.3-0.5	Silty sandy clay	0m to <1m 0m to <1m	Sand	45	110	0.5	160	55	40	3
		Fill: Silty sandy clay			45					40	3
BH130 BH131	0-0.1	Fill: Silty clay	Om to <1m Om to <1m	Sand	45	110	0.5	160	55	40	3
BH131 BH132	0-0.1	Fill: Silty sandy clay			45	110			55	40	3
		Fill: Silty sandy clay	Om to <1m	Sand			0.5	160			
BH132 BH133	0.3-0.5	Silty sandy clay	0m to <1m 0m to <1m	Sand	45	110	0.5	160	55	40	3
BH133 BH134	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	0m to <1m 0m to <1m	Sand	45	110	0.5	160	55	40	3
BH134 BH134	0.3-0.5	Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH134 BH135	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH135 BH136	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH136 -	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand							
[LAB_DUP]					45	110	0.5	160	55	40	3
BH137	0-0.1	Fill: Silty clayey sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH137	0.4 - 0.6	Silty clayey sand	Om to <1m	Sand		110	0.5	160	55		
BH138	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH139	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	
BH140	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH141	0-0.1	Fill: Silty clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH142	0-0.1	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
SDUP101 SDUP101 -		Fill: Silty sandy clay Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
[LAB_DUP]					45	NA	0.5	160	55	40	3
SDUP102	-	Fill: Silty sandy clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
SDUP108		Fill: Silty clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP109		Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP109 - [LAB_DUP]	-	Fill: Silty sandy clay	0m to <1m	Sand	NA	110	NA	NA	NA	NA	NA

Copyright JK Environments

Detailed Site Investigation (DSI) Lot 2 DP1281576, Princes Highway, Moruya, NSW E33942PL

			C ₆ -C ₁₀ (F1) plus BTEX	>C10-C16 (F2) plus napthalene	>C16-C34 (F3)	>C34-C40 (F4
QL - Envirolat	Services		25	50	100	100
EPM 2013 La	nd Use Category		RES	DENTIAL, PARKLAND	& PUBLIC OPEN SP	ACE
Sample Reference	Sample Depth	Soil Texture				
BH101	0 - 0.1	Coarse	<25	<50	<100	<100
BH101 -	0 - 0.1	Coarse	<25	<50	<100	<100
[LAB_DUP]						
BH102 BH103	0 - 0.1	Coarse Coarse	<25 <25	<50 <50	<100	<100 <100
BH103 BH104	0-0.1	Coarse	<25	<50	<100	<100
BH105	0 - 0.1	Coarse	<25	<50	<100	<100
BH106	0 - 0.1	Coarse	<25	<50	<100	<100
BH107 BH108	0 - 0.1	Coarse Coarse	<25 <25	<50 <50	<100	<100 <100
BH108 BH109	0 - 0.1	Coarse	<25	<50	<100	<100
BH110	0 - 0.1	Coarse	<25	<50	<100	<100
BH110 -	0 - 0.1	Coarse	<25	<50	<100	<100
[LAB_DUP]						
BH111 BH112	0 - 0.1 0 - 0.1	Coarse Coarse	<25 <25	<50	<100	<100
BH112 BH113	0 - 0.1	Coarse	<25	<50	<100	<100
BH114	0 - 0.1	Coarse	<25	<50	<100	<100
BH115	0 - 0.1	Coarse	<25	<50	<100	<100
BH116	0 - 0.1	Coarse	<25	<50	<100	<100
BH117 BH118	0-0.1	Coarse	<25	<50	<100	<100
BH118 BH119	0-0.1	Coarse	<25	<50	<100	<100
BH120	0 - 0.1	Coarse	<25	<50	<100	<100
BH121	0 -0.1	Coarse	<25	<50	<100	<100
BH122	0 - 0.1	Coarse	<25	<50	<100	<100
BH122 - [LAB_DUP]	0 - 0.1	Coarse	<25	<50	<100	<100
BH123 BH124	0 - 0.1	Coarse	<25	<50	<100	<100
BH124 BH124	0 -0.1 0.5 - 0.7	Coarse Coarse	<25	<50	<100	<100
BH124 BH125	0.5-0.7	Coarse	<25	<50	<100	<100
BH126	0 - 0.1	Coarse	<25	<50	<100	<100
BH127	0 - 0.1	Coarse	<25	<50	<100	<100
BH128	0 - 0.1	Coarse	<25	<50	<100	<100
BH128 - [LAB_DUP]	0 - 0.1	Coarse	<25	<50	<100	<100
BH128	0.3 - 0.5	Coarse	<25	<50	<100	<100
BH129 BH130	0 - 0.1	Coarse Coarse	<25 <25	<50 <50	<100	<100 <100
BH130 BH131	0 - 0.1	Coarse	<25	<50	<100	<100
BH132	0 - 0.1	Coarse	<25	<50	<100	<100
BH132	0.3 - 0.5	Coarse	<25	<50	<100	<100
BH133	0 - 0.1	Coarse	<25	<50	<100	<100
BH134	0 - 0.1	Coarse	<25	<50	<100	<100
BH134 BH135	0.3 - 0.5 0 - 0.1	Coarse Coarse	<25 <25	<50 <50	<100	<100 <100
BH135 BH136	0 - 0.1	Coarse	<25	<50	<100	<100
BH136 -	0 - 0.1	Coarse	<25	<50	<100	<100
[LAB_DUP]						
BH137	0 - 0.1	Coarse	<25	<50	<100	<100
BH137 BH138	0.4 - 0.6	Coarse	<25	<50	<100	<100
BH138 BH139	0 - 0.1	Coarse	<25	<50	<100	<100
BH140	0 - 0.1	Coarse	<25	<50	<100	<100
BH141	0 - 0.1	Coarse	<25	<50	<100	<100
BH142	0 - 0.1	Coarse	<25	<50	<100	<100
SDUP101 SDUP101 -	•	Coarse	<25	<50	<100	<100
[LAB_DUP]	-	Coarse	<25	NA	NA	NA
SDUP102	-	Coarse	<25	<50	<100	<100
SDUP108	-	Coarse	<25	<50	<100	<100
SDUP109 -		Coarse	<25	<50	<100	<100
(LAB DUP)		Coarse	NA	<50	<100	<100
tal Number		-	57	57	57	57
aximum Valı	Je		<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C10-C16 (F2) plus napthalene	>C16-C34 (F3)	>C34-C40 (F4)
BH101	0 - 0.1	Coarse	700	1000	2500	10000
BH101 -	0 - 0.1	Coarse				
[LAB DUP]	0 - 0.1	Coarse	700	1000	2500	10000
BH102	0 - 0.1	Coarse	700	1000	2500	10000
BH103	0 - 0.1	Coarse	700	1000	2500	10000
BH104	0 - 0.1	Coarse	700	1000	2500	10000
BH105	0 - 0.1	Coarse	700	1000	2500	10000
BH105	0 - 0.1	Coarse	700	1000	2500	10000
BH100 BH107	0-0.1	Coarse	700	1000	2500	10000
BH107 BH108	0-0.1	Coarse	700	1000	2500	10000
BH109	0 0.1	Coarse	700	1000	2500	10000
BH110	0 - 0.1	Coarse	700	1000	2500	10000
BH110 - [LAB_DUP]	0 - 0.1	Coarse	700	1000	2500	10000
BH111	0 - 0.1	Coarse	700	1000	2500	10000
BH112	0 - 0.1	Coarse	700	1000	2500	10000
BH113	0 - 0.1	Coarse	700	1000	2500	10000
BH114	0 - 0.1	Coarse	700	1000	2500	10000
BH115	0 - 0.1	Coarse	700	1000	2500	10000
BH116	0 - 0.1	Coarse	700	1000	2500	10000
BH110 BH117	0-0.1	Coarse	700	1000	2500	10000
BH118	0 - 0.1	Coarse	700	1000	2500	10000
BH119	0 - 0.1	Coarse	700	1000	2500	10000
BH120	0 - 0.1	Coarse	700	1000	2500	10000
BH121	0 -0.1	Coarse	700	1000	2500	10000
BH122	0 - 0.1	Coarse	700	1000	2500	10000
BH122 -	0 - 0.1	Coarse				
[LAB_DUP]	0-0.1	coarse	700	1000	2500	10000
BH123	0 - 0.1	Coarse	700	1000	2500	10000
BH124	0 -0.1	Coarse	700	1000	2500	10000
BH124	0.5 - 0.7	Coarse	700	1000	2500	10000
BH125	0 - 0.1	Coarse	700	1000	2500	10000
BH126	0 - 0.1	Coarse	700	1000	2500	10000
BH127	0 - 0.1	Coarse	700	1000	2500	10000
BH127 BH128	0-0.1	Coarse	700	1000	2500	10000
BH128 -	0-0.1	Coarse	/00	1000	2500	10000
[LAB_DUP]	0 - 0.1	Coarse	700	1000	2500	10000
BH128	0.3 - 0.5	Coarse	700	1000	2500	10000
BH129	0 - 0.1	Coarse	700	1000	2500	10000
BH130	0 - 0.1	Coarse	700	1000	2500	10000
BH131	0 - 0.1	Coarse	700	1000	2500	10000
BH132	0 - 0.1	Coarse	700	1000	2500	10000
BH132 BH132	0.3 - 0.5	Coarse	700	1000	2500	10000
BH132 BH133	0-0.1	Coarse	700	1000	2500	10000
BH133 BH134	0-0.1	Coarse	700	1000	2500	10000
BH134	0.3 - 0.5	Coarse	700	1000	2500	10000
BH135	0 - 0.1	Coarse	700	1000	2500	10000
BH136	0 - 0.1	Coarse	700	1000	2500	10000
BH136 -	0 - 0.1	Coarse				
[LAB_DUP]			700	1000	2500	10000
BH137	0 - 0.1	Coarse	700	1000	2500	10000
BH137	0.4 - 0.6	Coarse	700	1000	2500	10000
BH138	0 - 0.1	Coarse	700	1000	2500	10000
BH139	0 - 0.1	Coarse	700	1000	2500	10000
BH140	0 - 0.1	Coarse	700	1000	2500	10000
BH141	0 - 0.1	Coarse	700	1000	2500	10000
BH142	0 - 0.1	Coarse	700	1000	2500	10000
SDUP101		Coarse	700	1000	2500	10000
SDUP101 SDUP101 -			700	1000	2500	10000
[LAB DUP]	-	Coarse	700	NA	NA	NA
SDUP102		Coarse	700	1000	2500	10000
SDUP108		Coarse	700	1000	2500	10000
SDUP108		Coarse	700	1000	2500	10000
		coarse	700	1000	2300	10000
SDUP109 -						

TABLE 54 SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
QL - Envirolab Services	Critoria	25	50	100	100 6,300	0.2	0.5	1 4,500	12 000	1	
RC 2011 -Direct contact ite Use	Criteria	4,400	3,300	4,500	6,300 NTIAL WITH AC		14,000	, ,	12,000	1,400	
Sample Reference	Sample Depth			RESIDE	NHAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL CO	JNTACT			
BH101	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH101 - [LAB DUP]	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH102	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH103	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH104	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH105	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH106	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH107	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH108	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH109	0 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH110	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH110 - [LAB_DUP]	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH111	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH112	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH113	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH114	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH115	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH116	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH117	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH118	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH119	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH120	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH121	0 -0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH122	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH122 - [LAB_DUP]	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH123	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH124	0 -0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH124	0.5 - 0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH125	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH126	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH127	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH128	0 - 0.1 0 - 0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	0
BH128 - [LAB_DUP] BH128	0.3 - 0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH128 BH129	0.3-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH129 BH130	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH130 BH131	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH132	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH132	0.3 - 0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH132 BH133	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH135 BH134	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH134 BH134	0.3 - 0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH135	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH136	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH136 - [LAB_DUP]	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH137	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH137	0.4 - 0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH138	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH139	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH140	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH141	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH142	0 - 0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
SDUP101	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
SDUP101 - [LAB_DUP]	-	<25	NA	NA	NA	<0.2	<0.5	<1	<1	<1	-
SDUP102	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
SDUP108	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
SDUP109	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
SDUP109 - [LAB_DUP]	-	NA	<50	<100	<100	NA	NA	NA	NA	NA	-
otal Number of Samples		57	57	57	57	57	57	57	57	57	52
Maximum Value		<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>
Aaximum Value Concentration above the S Concentration above the I	_	<pql VALUE Bold</pql 	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pq< td=""></pq<></td></pql<></td></pql<>	<pql< td=""><td><pq< td=""></pq<></td></pql<>	<pq< td=""></pq<>

	Sample reference	Sample Depth	ACM in top 100mm	Volume of Soil (L)	Soil Mass (g)		Asbestos in ACM (g)	from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Asbestos in ACM <7mm (g)	from ACM <7mm in soil] (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)		Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg		FA and AF Estimation (g)	>7mm Estimation %(w/w)	in Estim
SAC			No	(=/			15/	(%w/w) 0.01		157	0.001			0.001					·				(67		95(W/W)	0.0
/2022	BH101	0 - 0.1	No	10	9,100	No ACM observed			No ACM <7mm observed	-		No FA observed		-	300620	BH101	0-0.1	604.98	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.
7/2022	BH101	0.1-0.35	No	10		No ACM observed			No ACM <7mm observed		-	No FA observed		-	300620	BH102			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH102 BH102	0-0.1	No	10		No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH103 BH104	0-0.1			No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0
/2022	BH102 BH103	0.1-0.3	No	10		No ACM observed	-		No ACM <7mm observed	-		No FA observed	-	-	300620 300620	BH104 BH105	0-0.1			No aspestos detected	<0.1	No visible asbestos detected No visible asbestos detected	-	-	<0.01	4
7/2022	BH103	0.1-0.4	No	10	.,	No ACM observed			No ACM <7mm observed			No FA observed	-	_	300620	BH105	0-0.1			No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	4
7/2022	BH104	0-0.1	No	10		No ACM observed			No ACM <7mm observed			No FA observed		-	300620	BH107				No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0
7/2022	BH104	0.1-0.3	No	10	11,100	No ACM observed			No ACM <7mm observed	-		No FA observed		-	300620	BH108	0 - 0.1	691.75	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH105	0-0.1	No	10	10,200	No ACM observed			No ACM <7mm observed	-		No FA observed		-	300620	BH109	0 - 0.1	616.65	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH105	0.1-0.3	No	10	11,400	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH110	0 - 0.1	696.87	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH106	0-0.1	No	10	10,200	No ACM observed			No ACM <7mm observed		-	No FA observed		-	300620	BH111	0-0.1	609.78	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
07/2022	BH106	0.1-0.3	No	10	,	No ACM observed			No ACM <7mm observed		-	No FA observed	-	-	300620	BH112	0 - 0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
07/2022	BH107 BH107	0-0.1	No	10		No ACM observed			No ACM <7mm observed No ACM <7mm observed		-	No FA observed	-	-	300620 300620	BH113 BH114	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected No visible asbestos detected	-	-	<0.01	4
07/2022	BH107 BH108	0.1-0.3	No	10	,	No ACM observed	-	-	No ACM <7mm observed		-	No FA observed	-	-	300620	BH114 BH115	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH108	0.1-0.4	No	10		No ACM observed			No ACM <7mm observed	-		No FA observed		-	300620	BH116	0 - 0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	4
7/2022	BH109	0-0.1	No	10	8,400	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH117	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
07/2022	BH109	0.1-0.4	No	10	10,400	No ACM observed			No ACM <7mm observed		-	No FA observed		-	300620	BH118	0-0.1	643.7	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
07/2022	BH110	0-0.1	No	10	10,200	No ACM observed			No ACM <7mm observed		-	No FA observed		-	300620	BH119	0-0.1	633.09	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0
07/2022	BH110	0.1-0.3	No	10	10,600	No ACM observed			No ACM <7mm observed		-	No FA observed		-	300620	BH120	0-0.1	524.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0
07/2022	BH111	0-0.1	No	10	8,900	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH121	0-0.1	722.88	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<0
7/2022	BH111	0.1-0.3	No	10	,	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH122	0-0.1			No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH112 BH112	0-0.1	No	10	.,	No ACM observed			No ACM <7mm observed		-	No FA observed	-	-	300620	BH123 BH124	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	4
07/2022	BH113	0.1-0.4	No	10	.,	No ACM observed			No ACM <7mm observed	-		No FA observed	-	_	300620	BH125			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	4
7/2022	BH113	0.1-0.3	No	10	.,	No ACM observed			No ACM <7mm observed			No FA observed		-	300620	BH126			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH114	0-0.1	No	10	9,000	No ACM observed			No ACM <7mm observed		-	No FA observed		-	300620	BH127			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH115	0-0.1	No	10	10,200	No ACM observed	-		No ACM <7mm observed		-	No FA observed		-	300620	BH128	0-0.1	707.97	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH115	0.1-0.3	No	3	3,400	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH129	0-0.1	676.79	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH116	0-0.1	No	10	9,200	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH130	0 - 0.1	628.43	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH116	0.1-0.3	No	10	10,700	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH131	0 - 0.1	640.33	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH117	0-0.1	No	10		No ACM observed			No ACM <7mm observed		-	No FA observed	-	-	300620	BH132	0 - 0.1			No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
7/2022	BH117	0.1-0.3	No	10		No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH133				No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<
07/2022	BH118 BH118	0-0.1	No	10	-,	No ACM observed			No ACM <7mm observed	-	-	No FA observed		-	300620	BH134 BH135			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	4
07/2022	BH118 BH119	0.1-0.6	NO	10	,	No ACM observed			No ACM <7mm observed		-	No FA observed	-	-	300620	BH135 BH136			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected	-	-	<0.01	<
07/2022	BH119	0.1-0.4	No	10	,	No ACM observed			No ACM <7mm observed			No FA observed		_	300620	BH137	0 - 0.1				<0.1	No visible asbestos detected	-	-	<0.01	
7/2022	BH120	0-0.1	No	10	9,300	No ACM observed			No ACM <7mm observed			No FA observed		-		-			_		-	-				+
07/2022	BH120	0.1-0.3	No	10	11,700	No ACM observed			No ACM <7mm observed	-	-	No FA observed	-	-		-	-		-		-	-	-		-	-
07/2022	BH121	0-0.1	No	8	8,300	No ACM observed	-		No ACM <7mm observed	-	-	No FA observed		-		-	-		-	-	-	-	-	-		
07/2022	BH121	0.1-0.4	No	10		No ACM observed			No ACM <7mm observed	-	-	No FA observed	-	-	-	-	-		-		-	-	-		-	
07/2022	BH122	0-0.1	No	10		No ACM observed			No ACM <7mm observed		-	No FA observed	-	-		-			-	-	-	-	-			_
07/2022	BH122	0.1-0.6	No	10	10,600	No ACM observed			No ACM <7mm observed			No FA observed		-		-			-	-	-	-	-	-		+-
07/2022	BH123	0-0.1	No	10	9,400 11,600	No ACM observed			No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed	-	-	-	-	-		-		-	-	-		-	+
07/2022	01112.5	0.1-0.4	No	10		No ACM observed			No ACM <7mm observed	-	-		-	_		_	_		-	-	_		-		-	-
	BH124	0-0.1					<u> </u>					No FA observed							-							+
07/2022	BH124 BH124	0-0.1	No	10	11,300	No ACM observed	_		No ACM <7mm observed		-	No FA observed		_	-	_	-		-		-	-				+
	BH124 BH124 BH125		-	10 8	,				No ACM <7mm observed No ACM <7mm observed	-	-				-	-	-		- - -		-	-	-			
07/2022	BH124	0.1-0.5	No	10	7,900	No ACM observed			No Actin Willin Observed		-	No FA observed			-	-			-						-	
07/2022 07/2022	BH124 BH125	0.1-0.5	No	8	7,900 12,200	No ACM observed No ACM observed			No ACM <7mm observed		-	No FA observed No FA observed			-	-	-	-	-				-			
7/2022 7/2022 7/2022	BH124 BH125 BH125	0.1-0.5 0-0.1 0.1-0.5	No No No	8 10	7,900 12,200 9,400	No ACM observed No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed	 		No FA observed No FA observed No FA observed		-		-					-	-	-			-
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1	No No No No No	10 8 10 10 10 8	7,900 12,200 9,400 12,200 8,300	No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed No ACM <7mm observed No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed No FA observed No FA observed No FA observed No FA observed				-	- - - - -	-	- - - - - - - - -		-					
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4	No No No No No No	10 8 10 10 10 8 10	7,900 12,200 9,400 12,200 8,300 9,600	No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed No FA observed No FA observed No FA observed No FA observed		- - - -	-	- - - - -		-	- - - - - - - - - - - - - - -		-		- - - - - -			
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127 BH128	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1	No No No No No No No	10 8 10 10 10 8 10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed No FA observed No FA observed No FA observed No FA observed No FA observed		- - - - -		- - - - - -	-	-	- - - - - - - - - - - - - -		-					
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4	No No No No No No	10 8 10 10 10 8 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,800	No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed No FA observed No FA observed No FA observed No FA observed		- - - -	-	- - - - -		-	- - - - - - - - - - - - - - -		-		- - - - - -			
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127 BH128 BH128	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3	No No No No No No No No	10 8 10 10 10 8 10 10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,800 8,600	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed		- - - - -	-	- - - - - -	-	-	- - - - - - - - - - - - - -		-					
17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127 BH128 BH128 BH128 BH129	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1	No No No No No No No No	10 8 10 10 10 8 10 10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,800 8,600 12,200	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed			-	-			- - - - - - - - - - - - - -							
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127 BH127 BH128 BH128 BH128 BH129	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1 0.1-0.3	No No No No No No No No No No	10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,800 8,600 12,200 9,500	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed			-	-	-		- - - - - - - - - - - - - -		-					
17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022 17/2022	BH124 BH125 BH125 BH126 BH127 BH127 BH128 BH128 BH128 BH129 BH129 BH130	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1 0.1-0.3 0-0.1	No No No No No No No No No No No	10 8 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,400 11,800 8,600 12,200 9,500 10,200	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed			-				- - - - - - - - - - - - - - - - - - -		-	- - - - - - - - - - - - - - - - -				
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH127 BH127 BH128 BH128 BH128 BH129 BH129 BH130	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1 0.1-0.3 0-0.1 0.1-0.3 0-0.1 0.1-0.4	No No No No No No No No No No No No	10 8 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,400 11,800 8,600 12,200 9,500 10,200 6,200	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed			-				- - - - - - - - - - - - - - - - - - -		-					
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127 BH128 BH128 BH129 BH129 BH129 BH130 BH130 BH131	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1 0.1-0.3 0-0.1 0.1-0.4 0-0.1 0.1-0.2 0-0.1	No No No No No No No No No No No No	10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,800 8,600 12,200 9,500 10,200 6,200 8,500 9,400	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed							- - - - - - - - - - - - - - - - - - -							
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH127 BH127 BH127 BH128 BH128 BH129 BH129 BH129 BH130 BH130 BH131 BH131 BH131 BH132 BH132	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1 0.1-0.3 0-0.1 0.1-0.4 0-0.1 0.1-0.2 0.1-0.1 0.1-0.3	No No No No No No No No No No No No No N	10 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 11,400 11,400 8,600 12,200 9,500 10,200 6,200 6,200 8,500 9,400 11,300	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022 7/2022	BH124 BH125 BH125 BH126 BH126 BH127 BH127 BH128 BH128 BH129 BH129 BH130 BH130 BH131 BH131 BH132 BH132 BH133	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0.1-0.4 0-0.1 0.1-0.3 0-0.1 0.1-0.3 0-0.1 0.1-0.2 0-0.1 0.1-0.3 0-0.1	No No No No No No No No No No No No No	10 8 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 8,600 10,200 10,200 6,200 8,500 9,400 11,300 8,400	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
T/2022 T/2023 T/2024 T/2025 T/2025 T/2026 T/	H124 H125 H125 H126 H126 H127 H127 H128 H127 H128 H128 H129 H128 H129 H129 H129 H130 H131 H131 H132 H133 H133	01-05 0-01 01-05 0-01 01-05 0-01 01-04 0-05 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01 0-01	No No No No No No No No No No No No No N	10 10	7,900 12,200 9,400 12,200 8,300 11,200 11,400 8,600 9,600 10,200 6,200 8,500 9,400 11,300 8,800 9,300 9,400 11,300 8,800 9,700	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
T/2022 T/7/2022	8H124 8H125 8H125 8H126 8H126 8H127 8H127 8H127 8H128 8H129 8H130 8H130 8H130 8H131 8H131 8H131 8H132 8H132	0.1-05 0-0.1 0.1-05 0-0.1 0.1-04 0-0.1 0.1-04 0-0.1 0.1-03 0-0.1 0.1-03 0-0.1 0.1-03 0-0.1 0.1-04 0-0.1 0.1-02 0-0.1 0.1-03 0-04 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05	No No No No No No No No No No No No No N	10 10	7,900 12,200 9,400 12,200 8,300 11,400 8,600 11,400 8,600 9,500 10,200 8,500 9,400 10,200 8,500 9,400 11,300 8,400 9,700 10,300	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
און	8H124 BH125 BH126 BH126 BH127 BH127 BH127 BH128 BH128 BH128 BH129 BH130 BH130 BH130 BH131 BH131 BH132 BH133 BH134 BH134	0.1-05 0-0.1 0.1-05 0-01 0.1-04 0-0.1 0.1-04 0-0.1 0.1-04 0-0.1 0.1-04 0-0.1 0.1-04 0-0.1 0.1-03 0-0.1 0.1-04 0-0.1 0.1-02 0-0.1 0.1-03 0-01 0.1-04 0-102 0-01 0-02 0-01 0-02 0-03	No No No No No No No No No No No No No N	10 10	7,900 1,2,00 9,400 1,2,00 8,300 1,1,400 1,1,400 1,1,400 1,1,400 1,2,000 1,0,200 1,0,200 1,1,300 8,400 1,0,300 1,0,300 9,900	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
T/2022 T/7/2022	8H124 8H125 8H125 8H126 8H126 8H127 8H127 8H127 8H128 8H129 8H130 8H130 8H130 8H131 8H131 8H131 8H132 8H132	0.1-05 0-0.1 0.1-05 0-0.1 0.1-04 0-0.1 0.1-04 0-0.1 0.1-03 0-0.1 0.1-03 0-0.1 0.1-03 0-0.1 0.1-04 0-0.1 0.1-02 0-0.1 0.1-03 0-04 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05 0-05	No No No No No No No No No No No No No N	10 10	7,900 1,2,00 9,400 1,2,00 8,300 1,1,400 1,1,400 8,600 1,1,400 6,200 6,200 6,200 8,500 1,1,300 8,400 1,300 9,400 1,300 1,300	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
7/2022 7/2023 7/2024 7/2025 7/2026 7/2027 7/	BH124 BH125 BH126 BH127 BH128 BH127 BH128 BH129 BH129 BH129 BH129 BH129 BH129 BH129 BH129 BH130 BH131 BH132 BH133 BH133 BH133 BH133 BH134 BH134 BH134 BH134	0.1-05 0-0.1 0-1-05 0-0.1 0-1-04 0-0.1 0-1-04 0-0.1 0-1-03 0-0.1 0-1-04 0-0.1 0-1-04 0-0.1 0-1-02 0-0.1 0	No No No No No No No No No No No No No N	3 10	7,900 12,200 9,400 12,200 8,300 9,600 11,400 14,400 1,1,400 8,500 1,2,200 9,500 1,1,200 9,500 1,1,300 8,500 1,1,300 9,900 10,300 9,900 11,300	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
7/2022 7/2024 7/2025 7/2026 7/2027 7/2028 7/2029 7/20202 7/2021 7/2022 7/2023 7/2024 7/2025 7/2026 7/2027 7/2028 7/2029 7/2020 7/2020 7	BH124 BH125 BH126 BH126 BH127 BH128 BH129 BH129 BH129 BH129 BH129 BH129 BH129 BH129 BH129 BH130 BH131 BH132 BH133 BH133 BH133 BH134 BH134 BH134 BH135 BH136 BH137	0.1-05 0-01 0.1-05 0-0.1 0	No No No No No No No No No No No No No N	3 10	7,900 12,200 9,400 12,200 12,200 8,300 9,600 11,400 14,800 8,500 10,200 6,200 8,500 11,300 8,400 9,700 10,300 11,300 9,900 11,300 9,600	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														
T/12021 T/12022 T/12022 T/2022 T/2023 T/2024 T/2025 T/2026 T/2027 T/2028 T/2029 T/2020 T/2021 T/2022 <td< td=""><td>BH124 BH125 BH126 BH127 BH128 BH128 BH129 BH128 BH129 BH129 BH129 BH130 BH131 BH132 BH133 BH134 BH133 BH134 BH135 BH136 BH137 BH138 BH134 BH134 BH134 BH135 BH136 BH137</td><td>0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1</td><td>No No N</td><td>20 20 20 20 20 20 20 20 20 20</td><td>7,900 12,200 9,400 12,200 8,300 9,600 11,400 9,600 11,400 9,600 10,200 9,500 10,200 9,500 11,300 9,700 10,300 10,300 11,300 10,300 10,300 11,300</td><td>No ACM observed No ACM observed</td><td></td><td></td><td>No ACM <7mm observed No ACM <7mm observed</td><td></td><td></td><td>No FA observed No FA observed</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	BH124 BH125 BH126 BH127 BH128 BH128 BH129 BH128 BH129 BH129 BH129 BH130 BH131 BH132 BH133 BH134 BH133 BH134 BH135 BH136 BH137 BH138 BH134 BH134 BH134 BH135 BH136 BH137	0.1-0.5 0-0.1 0.1-0.5 0-0.1 0.1-0.4 0-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-1-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1	No N	20 20 20 20 20 20 20 20 20 20	7,900 12,200 9,400 12,200 8,300 9,600 11,400 9,600 11,400 9,600 10,200 9,500 10,200 9,500 11,300 9,700 10,300 10,300 11,300 10,300 10,300 11,300	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														

Lot 2 DP128

ORY RESULTS

ASBEST HSL-A: |

									EIL AND ESL ASS	SESSMENT CRIT	TERIA												
Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH101	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH101 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH102	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03 8.03	100	410 410	210	1200 1200	360	480	170	180 180	180	120	1300	5600 5600	65	105	125	45	20
BH103 BH104	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	100	410	210 210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH105	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH106	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH107	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH108	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH109 BH110	00.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03 8.03	100	410 410	210 210	1200 1200	360 360	480 480	170 170	180 180	180 180	120	1300 1300	5600 5600	65	105 105	125	45 45	20
BH110 - [LAB DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH111	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	180	180	120	300	2800	50	85	70	105	20
BH112	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH113	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH114	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03 8.03	100	410 410	210	1200 1200	360 360	480 480	170 170	180 180	180 180	120	1300 1300	5600 5600	65	105	125	45 45	20
BH115 BH116	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH110 BH117	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH118	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	180	180	120	300	2800	50	85	70	105	20
BH119	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH120	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH121 BH122	0-0.1	Fill: Silty clayey sand Fill: Silty sandy clay	Coarse Fine	5.9 5.93	8 28	4.1 8.03	100	330 410	210 210	1200 1200	180 360	350 480	170 170	180 180	180	120	300 1300	2800 5600	50	85 105	70	105 45	20
BH122 - [LAB DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH123	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	180	180	120	300	2800	50	85	70	105	20
BH124	0 -0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	180	180	120	300	2800	50	85	70	105	20
BH124	0.5 - 0.7	Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	-	180	120	300	2800	50	85	70	105	20
BH125	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	180	180	120	300	2800	50	85	70	105	20
BH126 BH127	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03 8.03	100	410 410	210	1200 1200	360 360	480 480	170 170	180 180	180 180	120 120	1300 1300	5600	65	105	125	45 45	20
BH127 BH128	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH128 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH128	0.3 - 0.5	Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	-	180	120	1300	5600	65	105	125	45	20
BH129	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH130	0-0.1	Fill: Silty clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600 5600	65	105	125	45	20
BH131 BH132	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	100	410 410	210 210	1200	360	480	170	180 180	180	120	1300 1300	5600	65	105	125	45	20
BH132 BH132	0.3 - 0.5	Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170		180	120	1300	5600	65	105	125	45	20
BH133	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH134	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH134	0.3 - 0.5	Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	-	180	120	1300	5600	65	105	125	45	20
BH135 BH136	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	100	410 410	210	1200 1200	360 360	480	170	180 180	180	120	1300	5600 5600	65	105	125	45 45	20
8H136 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
BH137	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	180	180	120	300	2800	50	85	70	105	20
BH137	0.4 - 0.6	Silty clayey sand	Coarse	5.9	8	4.1	100	330	210	1200	180	350	170	-	180	120	300	2800	50	85	70	105	20
BH138	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03					-		170	-	180	120	1300	5600	65	105	125	45	
BH139	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	-		-	-	-		170	-	180	120	1300	5600	65	105	125	45	-
BH140 BH141	0-0.1	Fill: Silty sandy clay Fill: Silty clay	Fine	5.93 5.93	28	8.03 8.03	-		-		-	-	170 170	-	180	120	1300 1300	5600 5600	65 65	105 105	125	45 45	-
BH141 BH142	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	-	-		-	-	-	170	-	180	120	1300	5600	65	105	125	45	
SDUP101	-	Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
DUP101 - [LAB_DUP]		Fill: Silty sandy clay	Fine	5.93	28	8.03	-			-	-	-	170	-	180	-		-	65	105	125	45	-
SDUP102		Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
SDUP108 SDUP109	•	Fill: Silty clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20
		Fill: Silty sandy clay	Fine	5.93	28	8.03	100	410	210	1200	360	480	170	180	180	120	1300	5600	65	105	125	45	20

and Use Category												URBAN RESID	DENTIAL AND PUBLI	C OPEN SPAC	E								
									AGED HEAV	Y METALS-EILS			EIL	s					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
QL - Envirolab Services					1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
mbient Background Cor	centration (AB	C)		-	-	-	NSL	8	18	104	5	77	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture							_													
BH101 BH101 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03 8.03	<4	1	<1	3	<1	2	<1	<0.1	<25	<50	<100	<100 <100	<0.2	<0.5	<1	<1	<0.05
BH101 - [LAB_DUP] BH102	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	<1	<1	3	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	4	<1	<0.05
BH103	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	3	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH104	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	4	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH105	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	4	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH106	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	2	5	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH107 BH108	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28 28	8.03 8.03	<4	<1	<1	3	<1	3	<1	<0.1	<25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1	4	<0.05
BH108 BH109	0.01	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	1	7	<1	7	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH109 BH110	0-01	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	<1	<1	2	<1	2	1	<0.1	25	<50	<100	<100	<0.2	<0.5	<1	4	<0.05
BH110 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	<1	<1	3	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH111	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	<1	<1	4	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH112	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	4	<1	7	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH113 BH114	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	4	<1	3	<1	<0.1	<25	<50	<100	<100 <100	<0.2	<0.5	<1	<1	<0.05
BH114 BH115	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	<4	2	<1 3	4	2	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	4	4	<0.05
BH115 BH116	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	4	<1	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	4	<0.05
BH110 BH117	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	<1	<1	4	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH118	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	2	<1	5	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH119	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	<1	<1	3	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH120	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	6	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH121	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	1	<1	4	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH122 BH122 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28 28	8.03	<4	1	<1	5	<1	3	<1	<0.1	<25	<50 <50	<100	<100 <100	<0.2	<0.5	4	4	<0.05
BH122 - [D48_D07] BH123	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	1	1	8	<1	6	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH124	0 -0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	1	<1	5	<1	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH124	0.5 - 0.7	Silty clayey sand	Coarse	5.9	8	4.1	<4	4	<1	2	2	2	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH125	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	1	<1	5	1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH126	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	2	<1	4	<1	6	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH127	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	2	2	4	1	10	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH128	0-0.1	Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	<4	<1	<1	2	<1	1	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH128 - [LAB_DUP] BH128	0-0.1	Fill: Silty sandy clay Silty sandy clay	Fine	5.93	28	8.03	<4	<1	<1	2	<1	2	<1	<0.1 NA	<25	<50	<100	<100	<0.2	<0.5	4	4	<0.05
BH128 BH129	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	3	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	4	<0.05
BH130	0-0.1	Fill: Silty clay	Fine	5.93	28	8.03	<4	6	4	5	3	11	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH131	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	4	3	5	2	9	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH132	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	5	4	6	3	9	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH132	0.3 - 0.5	Silty sandy clay	Fine	5.93	28	8.03	<4	14	8	5	8	21	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH133 BH134	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03 8.03	<4	3	3	6	2	14	<1	<0.1	<25	<50	<100	<100 <100	<0.2	<0.5	<1	<1 <1	0.06 <0.05
BH134 BH134	0-0.1	Fill: Silty sandy clay Silty sandy clay	Fine	5.93	28	8.03	<4	3	2 <1	4	2	6	4	<0.1 NA	<25	<50	<100	<100	<0.2	<0.5	<1	4	<0.05
BH134 BH135	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	3	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH136	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	7	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH136 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	7	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH137	0-0.1	Fill: Silty clayey sand	Coarse	5.9	8	4.1	<4	1	<1	5	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH137 BH138	0.4 - 0.6	Silty clayey sand	Coarse	5.9	8	4.1	<4	4 NA	<1 NA	3	2	2 NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05 NA
BH138 BH139	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	NA	NA	NA	NA	NA	NA	<1	NA NA	<25	<50	<100	<100	<0.2	<0.5	<1	4 4	NA
BH139 BH140	0-0.1	Fill: Silty sandy clay Fill: Silty sandy clay	Fine	5.93	28	8.03	NA	NA	NA	NA	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	4	NA
BH141	0-0.1	Fill: Silty clay	Fine	5.93	28	8.03	NA	NA	NA	NA	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	NA
BH142	0-0.1	Fill: Silty sandy clay	Fine	5.93	28	8.03	NA	NA	NA	NA	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	NA
SDUP101		Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	1	<1	3	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
DUP101 - [LAB_DUP]		Fill: Silty sandy clay	Fine	5.93	28	8.03	NA	NA	NA	NA	NA	NA	<1	NA	<25	NA	NA	NA	<0.2	<0.5	<1	<1	NA
SDUP102 SDUP108		Fill: Silty sandy clay	Fine	5.93 5.93	28	8.03	<4	1	<1	5	<1	5	<1	<0.1	<25	<50	<100	<100 <100	<0.2	<0.5	4	4	<0.05
SDUP108 SDUP109		Fill: Silty clay Fill: Silty sandy clay	Fine	5.93	28	8.03	<4	8	4	3	4	14	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
DUP109 - [LAB_DUP]		Fill: Silty sandy clay	Fine	5.93	28	8.03	×4 NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<100	<100	×U.2 NA	<u.5< td=""><td>NA</td><td>NA</td><td><0.05 NA</td></u.5<>	NA	NA	<0.05 NA
		,,,																					
otal Number of Sample	s			58	58	58	51	51	51	51	51	51	57	46	57	57	57	57	57	57	57	57	51
Aaximum Value				5.93	28	8.03	<pql< td=""><td>14</td><td>8</td><td>12</td><td>8</td><td>21</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	14	8	12	8	21	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.06</td></pql<></td></pql<>	<pql< td=""><td>0.06</td></pql<>	0.06
oncentration above the oncentration above the he guideline correspond	PQL			VALUE Bold	•																		

TABLE S6 SOIL LABORATORY RESULTS COMPARED TO All data in mg/kg unless stated otherwise FORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS

Detailed Site Investigation (DSI) Lot 2 DP1281576, Princes Highway, Moruya, NSW E33942PL

Copyright JK Environments

TABLE S7 SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

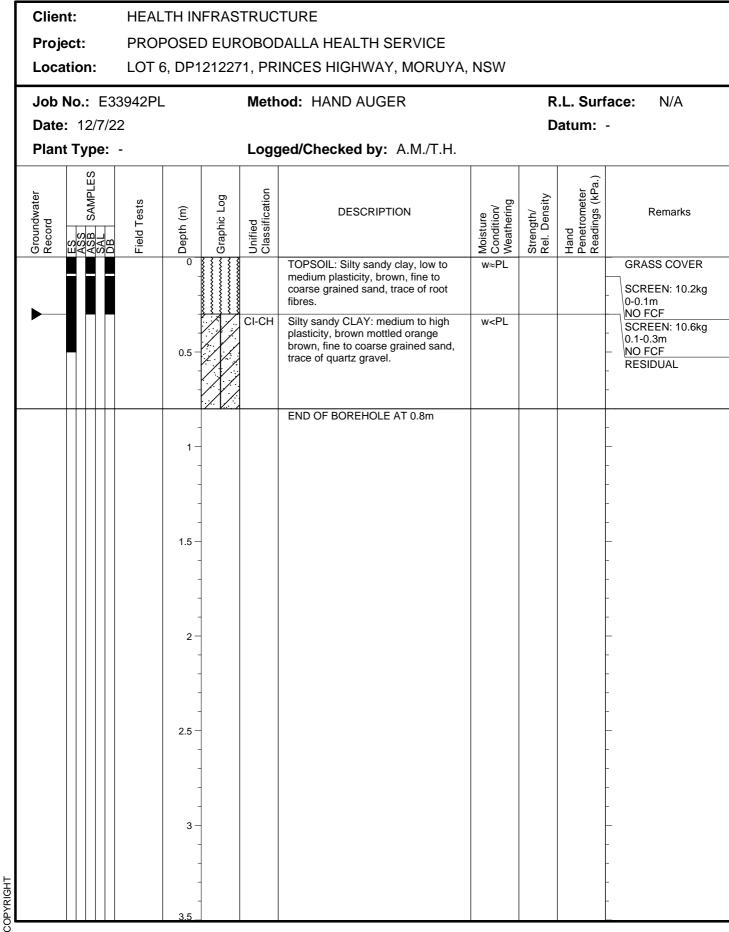
All data in mg/kg unless stated otherwise

						HFAVV	METALS				P	AHs		0C/0P	PESTICIDES		Total			TRH				BTFX CO	MPOUNDS		
			Arsenic	Cadmium	Chromium		Lead	Mercury	Nickel	Zinc	Total	B(a)P	Total		Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
								-			PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste SCC1			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste CT2			400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid Waste SCC2	Commite		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH101	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	2	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH101 - [LAB_DUP] BH102	0 - 0.1	Fill: Silty sandy clay Fill: Silty sandy clay	<4 <4	<0.4	<1 <1	<1 <1	3	<0.1	<1 <1	2	<0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
BH103	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	3	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH104	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	5	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH105	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	5	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH106 BH107	0 - 0.1	Fill: Silty sandy clay Fill: Silty sandy clay	<4 <4	<0.4	1 <1	2 <1	5	<0.1	<1 <1	5	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH107 BH108	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	1	6	<0.1	<1	3	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH109	0 0.1	Fill: Silty sandy clay	<4	<0.4	1	1	7	<0.1	<1	7	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH110	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	2	<0.1	<1	2	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH110 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	2	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA Not Detected
BH111 BH112	0 - 0.1	Fill: Silty clayey sand Fill: Silty sandy clay	<4 <4	<0.4	<1	<1 <1	4	<0.1	<1 <1	2	<0.05	<0.05 <0.05	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH112 BH113	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	3	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH114	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	1	4	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH115	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	3	3	12	<0.1	2	13	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH116	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	4	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH117 BH118	0 - 0.1	Fill: Silty sandy clay Fill: Silty clayey sand	<4 <4	<0.4	<1 2	<1 <1	4	<0.1	<1 <1	2	<0.05	<0.05 <0.05	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH119	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	3	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH120	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	6	<0.1	<1	2	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH121	0 -0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	4	<0.1	<1	3	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH122	0 - 0.1	Fill: Silty sandy clay	<4 <4	<0.4	1	<1 <1	5	<0.1	<1	3	<0.05	<0.05 <0.05	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100 <100	<100	<50	<0.2	<0.5	<1	<1	Not Detected NA
BH122 - [LAB_DUP] BH123	0-0.1	Fill: Silty sandy clay Fill: Silty clayey sand	<4	<0.4	1	1	8	<0.1	<1 <1	6	<0.05	<0.05	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected
BH124	0 -0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	5	<0.1	<1	4	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH124	0.5 - 0.7	Silty clayey sand	<4	<0.4	4	<1	2	<0.1	2	2	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH125	0-0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	5	<0.1	1	2	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	< 0.5	<1	<1	Not Detected
BH126 BH127	0 - 0.1	Fill: Silty sandy clay Fill: Silty sandy clay	<4 <4	<0.4	2	<1 2	4	<0.1	<1	6 10	<0.05	<0.05 <0.05	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH128	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	2	<0.1	<1	10	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH128 - [LAB_DUP]	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	2	<0.1	<1	2	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH128	0.3 - 0.5	Silty sandy clay	<4	<0.4	3	<1	4	<0.1	1	3	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH129	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	2	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH130 BH131	0 - 0.1	Fill: Silty clay Fill: Silty sandy clay	<4 <4	<0.4	6	4	5	<0.1	3	11 9	<0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH132	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	5	4	6	<0.1	3	9	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH132	0.3 - 0.5	Silty sandy clay	<4	<0.4	14	8	5	<0.1	8	21	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH133	0-0.1	Fill: Silty sandy clay	<4	<0.4	3	3	6	<0.1	2	14	0.06	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH134 BH134	0 - 0.1	Fill: Silty sandy clay Silty sandy clay	<4 <4	<0.4	3	2 <1	4	<0.1	2	11 6	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
BH134 BH135	0.3 - 0.5	Fill: Silty sandy clay	<4 <4	<0.4	4	<1	3	<0.1	<1	2	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH136	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	7	<0.1	<1	5	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH136 - [LAB_DUP]	0 - 0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	7	<0.1	<1	5	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH137	0-0.1	Fill: Silty clayey sand	<4	<0.4	1	<1	5	<0.1	<1	3	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH137 BH138	0.4 - 0.6	Silty clayey sand Fill: Silty sandy clay	<4 NA	<0.4 NA	4 NA	<1 NA	3 NA	<0.1 NA	2 NA	2 NA	<0.05 NA	<0.05 NA	NA NA	NA	NA	NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
BH139	0-0.1	Fill: Silty sandy clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH140	0 - 0.1	Fill: Silty sandy clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH141	0-0.1	Fill: Silty clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH142	0 - 0.1	Fill: Silty sandy clay	NA	NA C0.4	NA 1	NA <1	NA 3	NA	NA <1	NA 2	NA	NA	NA <0.1	NA <0.1	NA <0.1	NA	NA <0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA NA
SDUP101 SDUP101 - [LAB_DUP]	-	Fill: Silty sandy clay Fill: Silty sandy clay	<4 NA	<0.4 NA	1 NA	<1 NA	3 NA	<0.1 NA	<1 NA	2 NA	<0.05 NA	<0.05 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 NA	<100 NA	<100 NA	<50 NA	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA
SDUP102	-	Fill: Silty sandy clay	<4	<0.4	1	<1	5	<0.1	<1	5	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP108	-	Fill: Silty clay	<4	<0.4	8	4	6	<0.1	4	14	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP109 SDUP109 - [LAB_DUP]	-	Fill: Silty sandy clay Fill: Silty sandy clay	<4 NA	<0.4 NA	1 NA	<1 NA	3 NA	<0.1 NA	<1 NA	2 NA	<0.05 NA	<0.05 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 NA	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 NA	<0.5 NA	<1 NA	<1 NA	NA NA
Total Number of Samples		· · · ·	51	51	51	51	51	51	51	51	51	51	46	46	46	46	46	57	57	57	57	57	57	57	57	57	37
Maximum Value			<pql< td=""><td><pql< td=""><td>14</td><td>8</td><td>12</td><td><pql< td=""><td>8</td><td>21</td><td>0.2</td><td>0.06</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>14</td><td>8</td><td>12</td><td><pql< td=""><td>8</td><td>21</td><td>0.2</td><td>0.06</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	14	8	12	<pql< td=""><td>8</td><td>21</td><td>0.2</td><td>0.06</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	8	21	0.2	0.06	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected
Concentration above the CT1 Concentration above SCC1 Concentration above the SCC Concentration above PQL				VALUE VALUE VALUE Bold																							

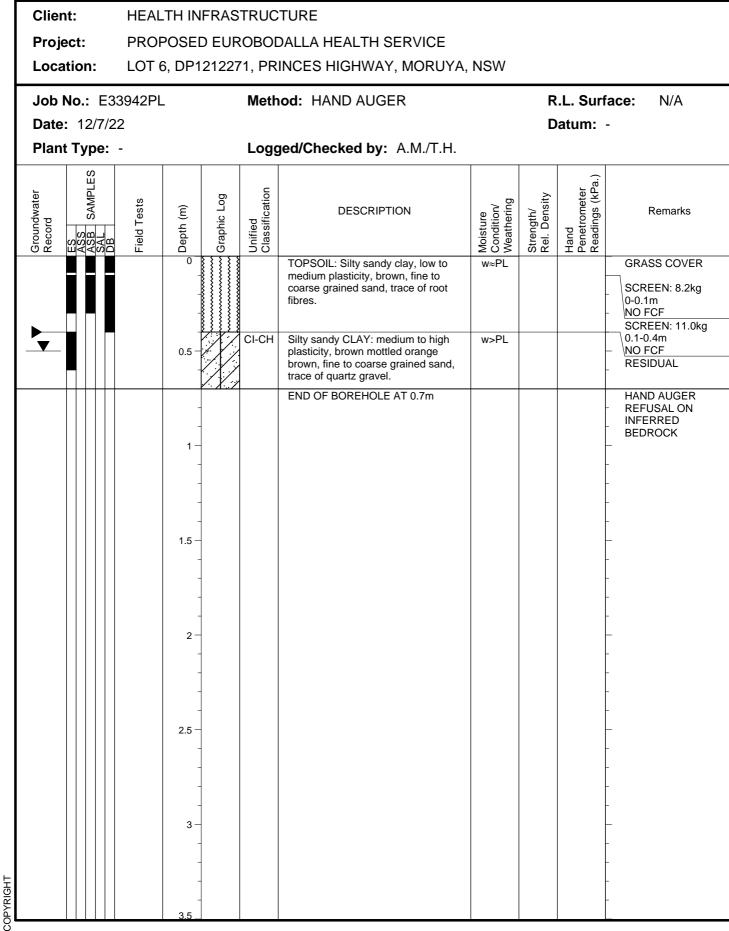
Detailed Site Investigation (DSI) Lot 2 DP1281576, Princes Highway, Moruya, NSW E33942PL

Detailed Site Investigation (DSI)
Lot 2 DP1281576, Princes Highway, Moruya, NSW
E33942PL

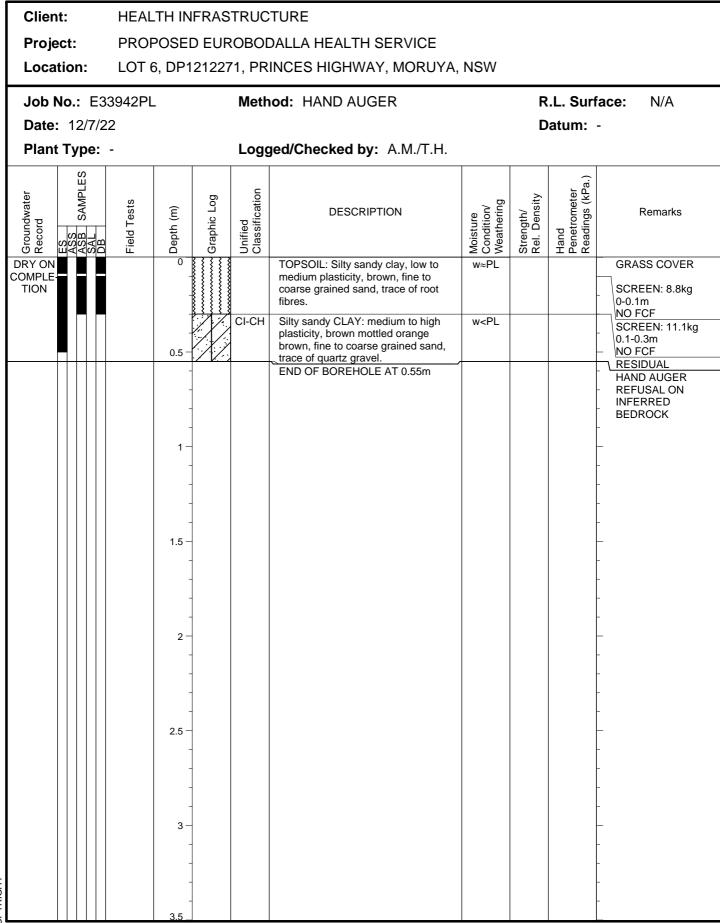
TABLE Q1 SOIL QA/QC SUMMARY																																																								
	TRH C6 - C10	TRH >C10-C16	IRH >C16-C34 TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Benzo(g,h,i)perylene	HCB	alpha- BHC	gamma- BHC	beta- BHC	Heptachlor	delta- BHC	Aldrin Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane	Endosulfan I	pp- DDE	Dieldrin	Endrin	pp- DDD	Endosulfan II Porton	PP- UUI Endrin Aldehvde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthion	Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Arsenic	Cadmium Chromium	Copper	Lead	Mercury	Nickel Zinc
PQL Envirolab SYD	25		00 100	0.2	0.5	1	2 1	0.1	0.1	0.1	0.1	0.1	0.1 0	1 0.1	0.1	0.1	0.2	0.05 0	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1 0	0.1 0.1	1 0.1	1 0.1	0.1	0.1	0.1	0.1	0.1 0	0.1 0.	.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1 0	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	4 0	0.4 1	. 1	1	0.1	1 1
PQL Envirolab VIC	25	50 1	00 100	0.2	0.5	1.0 2	2.0 1.0	0 0.1	0.1	0.1	0.1	0.1	0.1 0	1 0.1	0.1	0.1	0.2	0.1 0	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1 0	0.1 0.1	1 0.1	1 0.1	0.1	0.1	0.1	0.1	0.1 0	0.1 0.	1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1 0	0.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	4.0 0	0.4 1.0	0 1.0	1.0	0.1	1.0 1.0
Inter BH101 0-0.1	<25	<50 <1	100 <10	0 < 0.2	<0.5	<1	<2 <1	<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.1	<0.1	<0.1	<0.2	<0.05 <	:0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <0	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<4 <	0.4 1	. <1	3	<0.1	<1 2
laboratory SDUP101 -	<25	<50 <1	100 <10	0 < 0.2	<0.5	<1	<2 <1	<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.1	<0.1	< 0.1	<0.2	< 0.05 <	:0.1 <0	0.1 <0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.	.1 <0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1 <	:0.1 <0	0.1 <0	.1 <0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<4 <	0.4 1	i <1	3	<0.1	<1 2
laboratory SDUP101 - duplicate MEAN	nc	nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	nc	nc	nc	nc r	nc nc	c no	c nc	nc	nc	nc	nc	nc	nc n	ic n	c nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc i	nc 1	i nc	3	nc	nc 2
RPD %	nc	nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	nc	nc	nc	nc r	nc nc	c nc	c nc	nc	nc	nc	nc	nc	nc n	nc n	c nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc i	nc 09	% nc	0%	nc	nc 0%
Inter BH106 0 - 0.1	<25	<50 <1	100 <10	0.2	<0.5	-1	<2 <1	<0.1	<0.1	<0.1	<0.1	-0.1	0.1 (0.1 <0.1	<0.1	<0.1	<0.2	<0.0E	:0.1 <0	0.1 <0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.	.1 <0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <0	1 -0	.1 <0.1	<0.1	< 0.1	<0.1	<0.1	<0.1 <	0.1 <0	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<4 <	0.4 1	1 2		<0.1	<1 E
laboratory SDUP102 -		<50 <1		0.2	<0.5	<1	(2) (1)	<0.1	<0.1		<0.1	<0.1	<0.1 <0).1 <0.1		<0.1	<0.2		:0.1 <0								0.1 <0.			<0.1	<0.1				:0.1 <0						<0.1		0.1 <0		1 <0.1	<0.1	<0.1	<0.1				0.4 1	1 <1	5	<0.1	
duplicate MEAN		nc r	nc nc	nc	nc	nc	nc nc	. nc	nc	nc	nc	nc	nc r		nc	nc	nc	nc	nc n	ic nc	nc	0.1	nc	nc	nc	nc r	nc nc	c nc	nc nc	0.1	nc	nc	nc	nc	nc n	n n	c nc	nc	nc	nc	nc	nc	nc n	r nc	nc	nc	nc	nc	nc			nc 1	1 1.25	5	nc	
RPD %		nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc		nc	nc	nc	nc	nc r	nc nc	c no	c nc	nc	nc	nc	nc	nc	nc n	nc n	c nc		nc	nc	nc	nc	nc n	c nc	nc	nc	nc		nc							nc 0%
																																																					-			
Inter BH130 0 - 0.1	<25	<50 <1	100 <10	0 < 0.2	<0.5	<1	<2 <1	< 0.1	<0.1	< 0.1	< 0.1	<0.1 <	<0.1 <0	0.1 <0.1	<0.1	< 0.1	<0.2	< 0.05 <	:0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.	.1 <0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <0	0.1 <0	.1 <0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<4 <	:0.4 6	4 ذ	5	<0.1	3 11
laboratory SDUP108 - duplicate MEAN	<25	<50 <1	100 <10	0 < 0.2	<0.5	<1	<2 <1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1 <	<0.1 <0).1 <0.1	<0.1	< 0.1	<0.2	< 0.05	:0.1 <0	0.1 <0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	.1 <0.	.1 <0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1 <	:0.1 <0	0.1 <0	.1 <0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<4 <	0.4 8	3 4	6	<0.1	4 14
	nc	nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	nc	nc	nc	nc r	nc nc	c nc	c nc	nc	nc	nc	nc	nc	nc n	nc n	c nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc i	nc 7	/ 4	5.5	nc	3.5 12.5
RPD %	nc	nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	nc	nc	nc	nc r	nc nc	c nc	c nc	nc	nc	nc	nc	nc	nc n	ic n	c nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc i	nc 29	9% 0%	18%	nc	29% 24%
Inter BH129 0-0.1	<25	<50 <1	100 <10	0 < 0.2	<0.5	<1	<2 <1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	< 0.1	<0.2	< 0.05 <	0.1 <0	0.1 < 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 •	<0.1 <0	0.1 <0.	.1 <0.	.1 <0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1 <	:0.1 <0	0.1 <0	.1 <0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1 <	0.1 <0	1 <0.1	1 < 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<4 <	0.4 1	1 <1	3	< 0.1	<1 2
	<25		100 <10	0 < 0.2	<0.5	<1	<2 <1	<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.1	<0.1	<0.1	<0.2	<0.05	:0.1 <0	0.1 <0.1	<0.1		<0.1	<0.1	<0.1	<0.1 <0	0.1 <0.	1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 <0	0.1 <0	.1 <0.1		<0.1	<0.1	<0.1	<0.1 <	0.1 <0	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<4 <	:0.4 1	1 <1	3	<0.1	<1 2
laboratory SDUP109 - duplicate MEAN		nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	nc	nc	nc	nc r	nc nc	c no	c nc	nc	nc	nc	nc	nc	nc n	ic n	c nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc i	nc 1	1 nc	3	nc	nc 2
RPD %		nc r	nc nc	nc	nc	nc	nc nc	nc	nc	nc	nc	nc	nc r	ic nc	nc	nc	nc	nc	nc n	ic nc	nc	nc	nc	nc	nc	nc r	nc nc	c nc	c nc	nc	nc	nc	nc	nc	nc n	ic n	c nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc i	nc 09	% nc	0%		nc 0%
Field TBS101 -	<25	NA N		<0.2	<0.5	<1	<2 <1	NA	NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA	NA	NA N		A NA	A NA	NA	NA	NA	NA	NA I	NA N		A NA	NA	NA	NA	NA	NA I	NA N	A NA	NA	NA	NA	NA	NA	NA	NA M	NA NA		NA	NA	NA NA
Blank 13/07/22																																																								
Field FR-HA101 µg/L Rinsate 13/07/22	NA	NA N	NA NA	<1	<1	<1	<2 <1	. NA	NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA	NA	NA N	NA NA	A NA	A NA	NA	NA	NA	NA	NA I	NA N	IA N	A NA	NA	NA	NA	NA	NA I	NA N	A NA	NA	NA	NA	NA	NA	NA	NA M	NA NA	A NA	NA	NA	NA NA
Rinsate 13/07/22																																		-																						
Trip TS101	-			98%	96%	98% 9	6% 98%	6 -	-	-	-	-	-				-	-	-		-	-	-	-	-	-		-		-			-	-			-	-	-	-	-	-		-		-		-	-	-	-			-	-	
Spike 13/07/22																																																								
Result outside of QA/QC	C acceptar	nce criteria																																																						

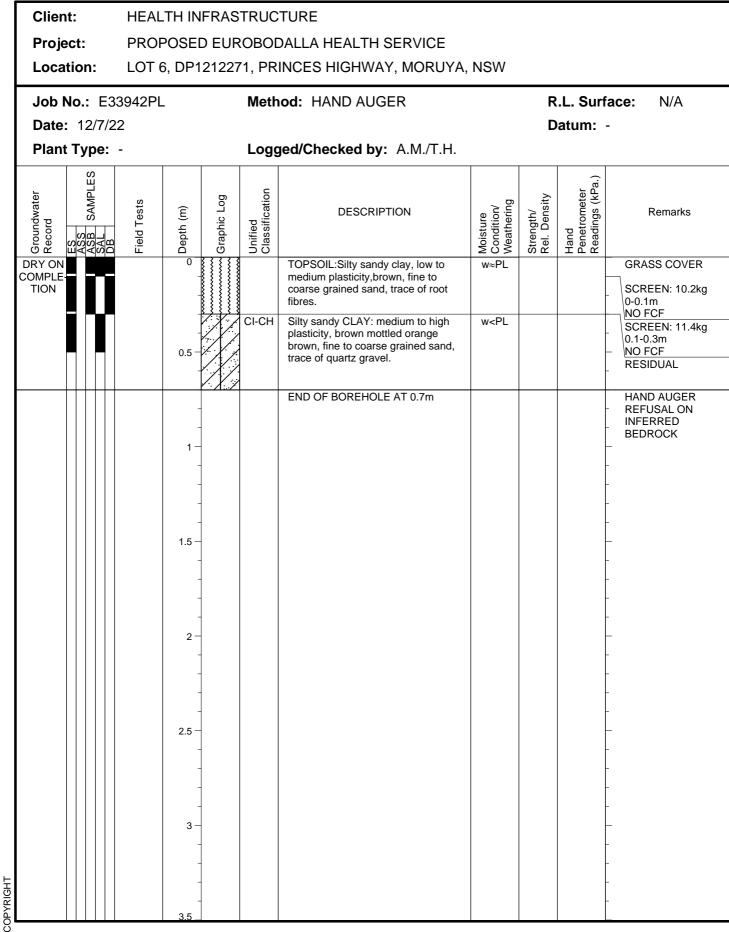


Appendix D: Borehole Logs



Client:	HEAL	TH IN	FRAS	TRUC	TURE				
Project:	PROF	POSE) EUR		OALLA HEALTH SERVICE				
Location:	LOT 6	6, DP1	21227	'1, PR	INCES HIGHWAY, MORUYA,	NSW			
Job No.:	E33942PL	-		Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
Date: 12/7	//22						D	atum:	
Plant Type): -			Logg	jed/Checked by: A.M./T.H.				
Groundwater Record ES ASB SAMPLES	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		0 - -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres.	w≈PL		-	GRASS COVER SCREEN: 9.1kg 0-0.1m NO FCF
		0.5 —		CI-CH	Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w <pl< td=""><td></td><td>-</td><td>SCREEN: 10.2kg 0.1-0.35m - NO FCF RESIDUAL</td></pl<>		-	SCREEN: 10.2kg 0.1-0.35m - NO FCF RESIDUAL
COPYRIGHT					END OF BOREHOLE AT 0.65m				HAND AUGER REFUSAL ON INFERRED BEDROCK




Environmental logs are not to be used for geotechnical purposes

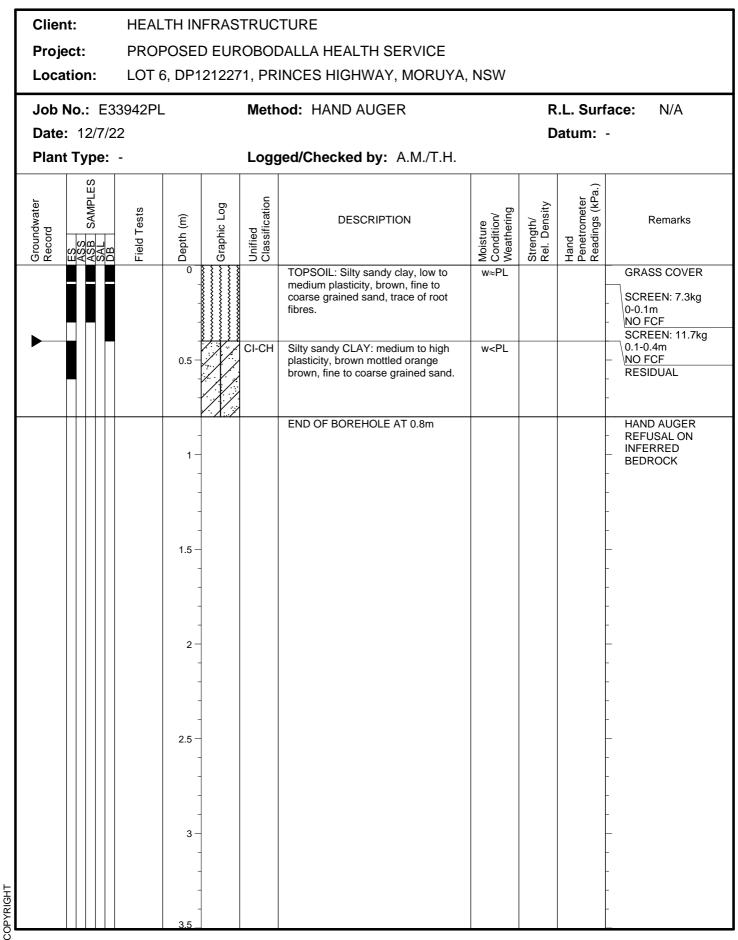
Log No.

104

Environmental logs are not to be used for geotechnical purposes

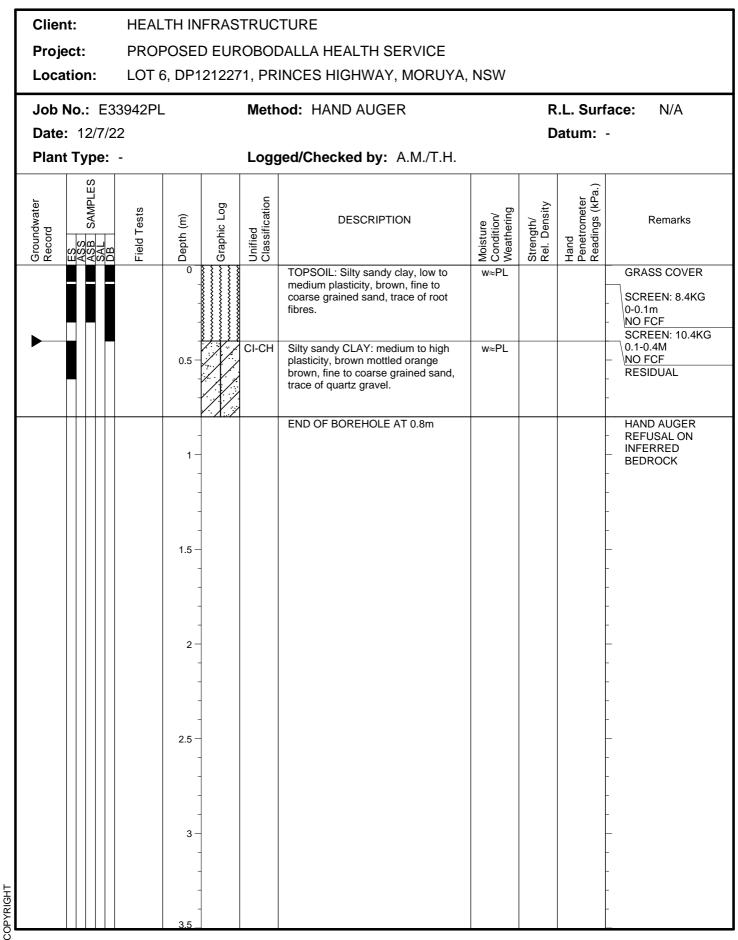
Log No.

105

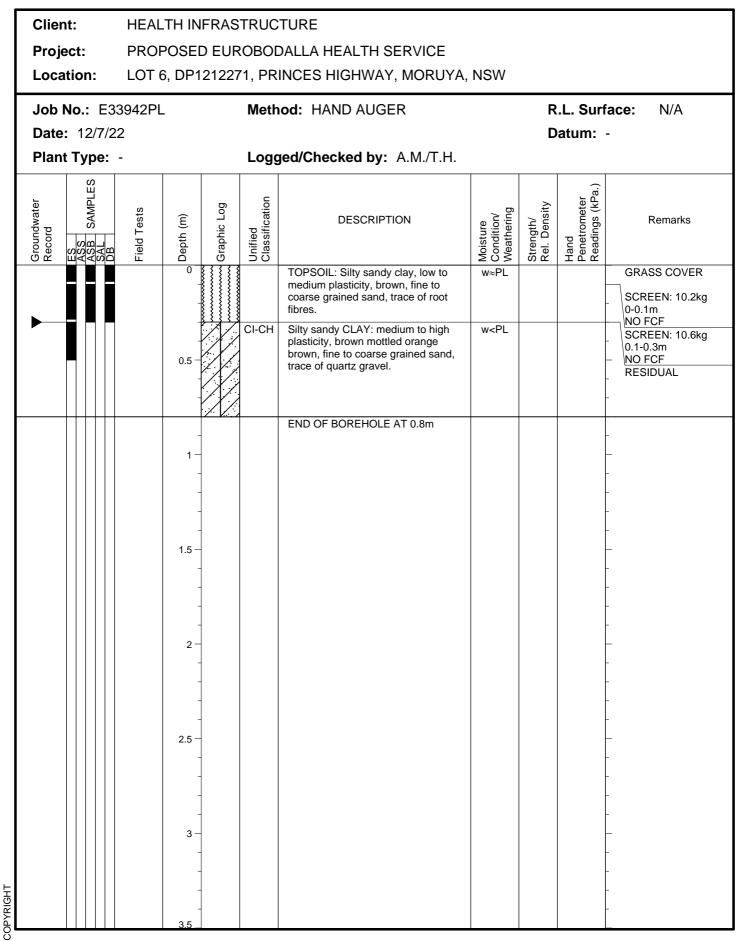


Client	t:	HEAL	TH IN	FRAS	TRUC	TURE				
Proje	ct:	PROP	OSEI	D EUR		OALLA HEALTH SERVICE				
Locat	ion:	LOT 6	, DP1	21227	'1, PR	INCES HIGHWAY, MORUYA,	NSW			
Job N	lo.: E33	3942PL			Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
Date:	12/7/22	2						D	atum:	
Plant	Туре:	-			Logo	ed/Checked by: A.M./T.H.				
Groundwater Record	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION			0 - -		CI-CH	TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres. Silty sandy CLAY: medium to high	w≈PL w <pl< th=""><th></th><th></th><th>GRASS COVER SCREEN: 10.2kg 0-0.1m NO FCF</th></pl<>			GRASS COVER SCREEN: 10.2kg 0-0.1m NO FCF
			- 0.5		01 011	plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.			-	SCREEN: 12.4kg 0.1-0.3m NO FCF
				/. X.:7		END OF BOREHOLE AT 0.6m				REFUSAL HAND AUGER
										- Control Cont
СОРҮКІСНТ			- - - 3.5 _							

	Client: HEALTH INFRASTRUCTURE												
	Proje	ect:	PROPOSED EUROBODALLA HEALTH SERVICE										
	Location: LOT 6, DP1212271, PRINCES HIGHWAY, MORUYA, NSW												
Γ	Job	No.: E33	3942PL			Meth	od: HAND AUGER		R.L. Surface: N/A				
	Date	: 12/7/2	2						D	atum:	-		
	Plan	t Type:	-			Logg	Logged/Checked by: A.M./T.H.						
	Groundwater Record	ES ASS SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
				0			TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of ash and root fibres.	w≈PL			GRASS COVER SCREEN: 9.8kg 0-0.1m NO FCF		
	F			0.5 -		CI-CH	Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w <pl< th=""><th></th><th></th><th>SCREEN: 11.6kg 0.1-0.3m NO FCF RESIDUAL</th></pl<>			SCREEN: 11.6kg 0.1-0.3m NO FCF RESIDUAL		
				-							-		
				-			END OF BOREHOLE AT 0.8m				-		
				1							-		
				-							-		
				-							-		
				1.5 —							_		
				-							-		
				-							-		
				2 -							_		
				-							-		
				-							-		
				- 2.5 —							-		
				2.5							-		
				-							-		
				-							-		
				3-							-		
				-							-		
COPYRIGHT				-							-		
Ч И И				3.5							_		

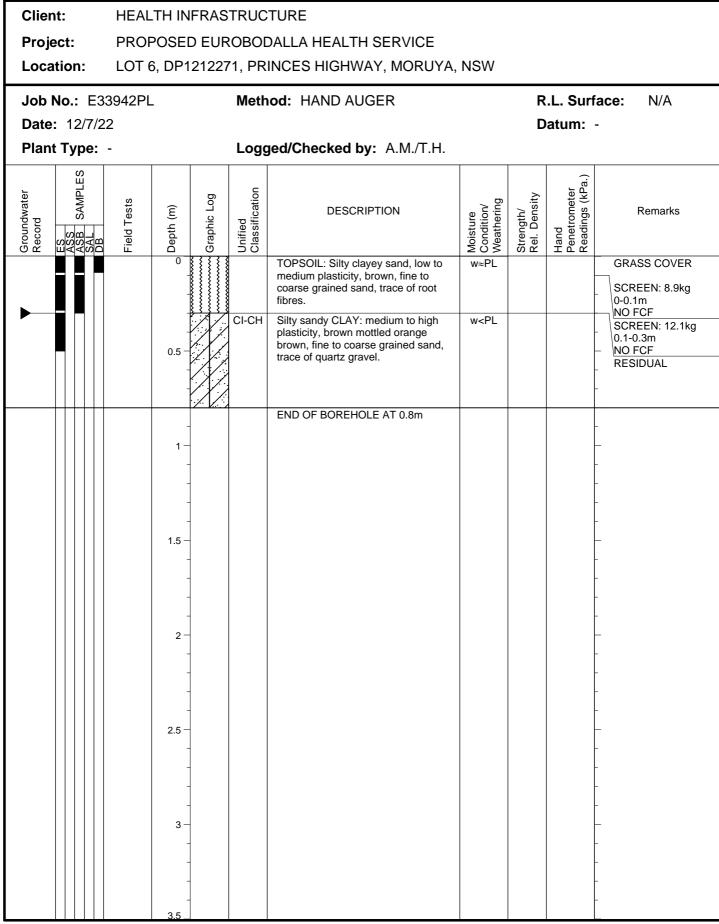

Environmental logs are not to be used for geotechnical purposes

ents AL LOG


Environmental logs are not to be used for geotechnical purposes

Log No.

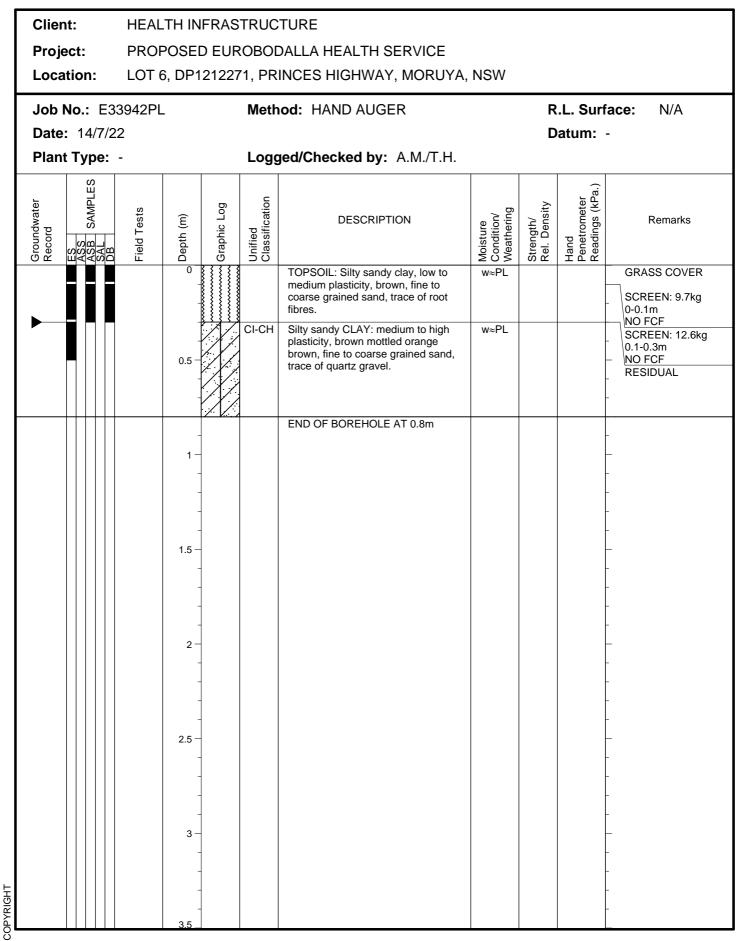
109


Environmental logs are not to be used for geotechnical purposes

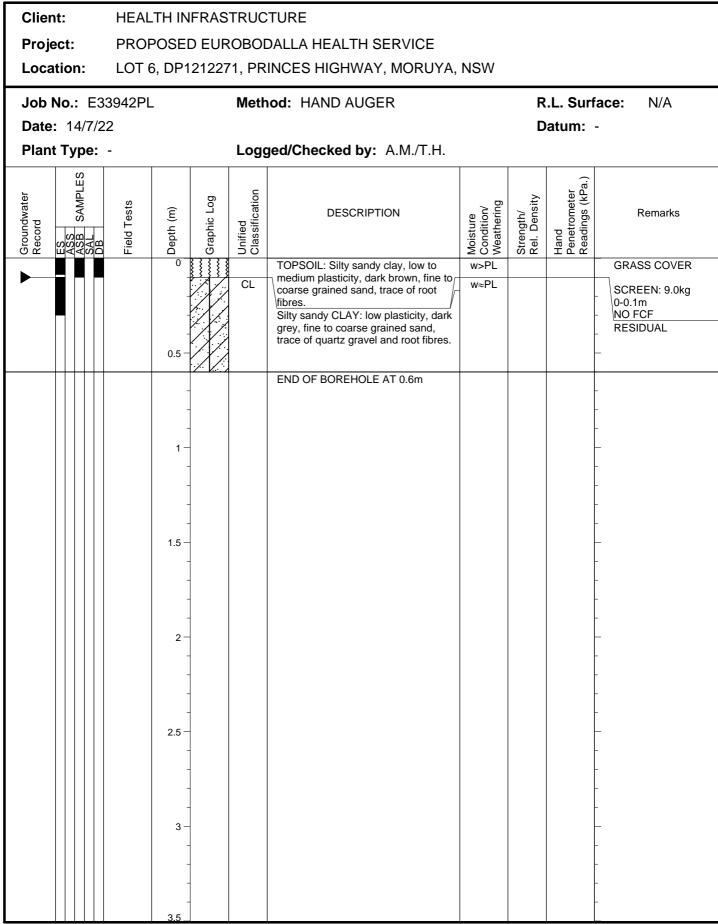
Log No.

110

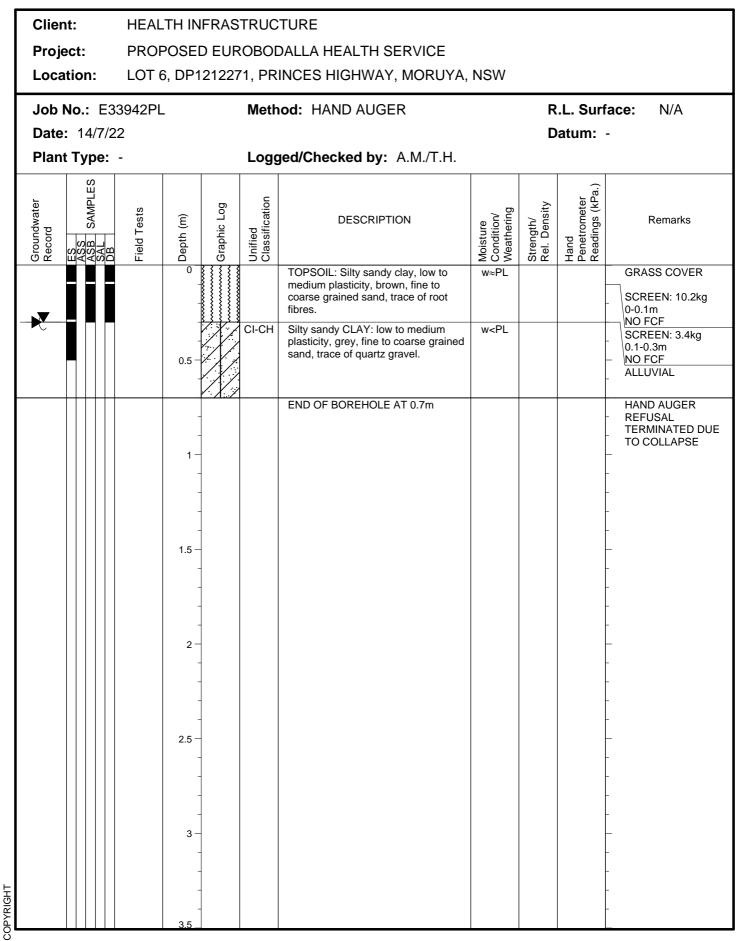
Environmental logs are not to be used for geotechnical purposes


Log No.

111

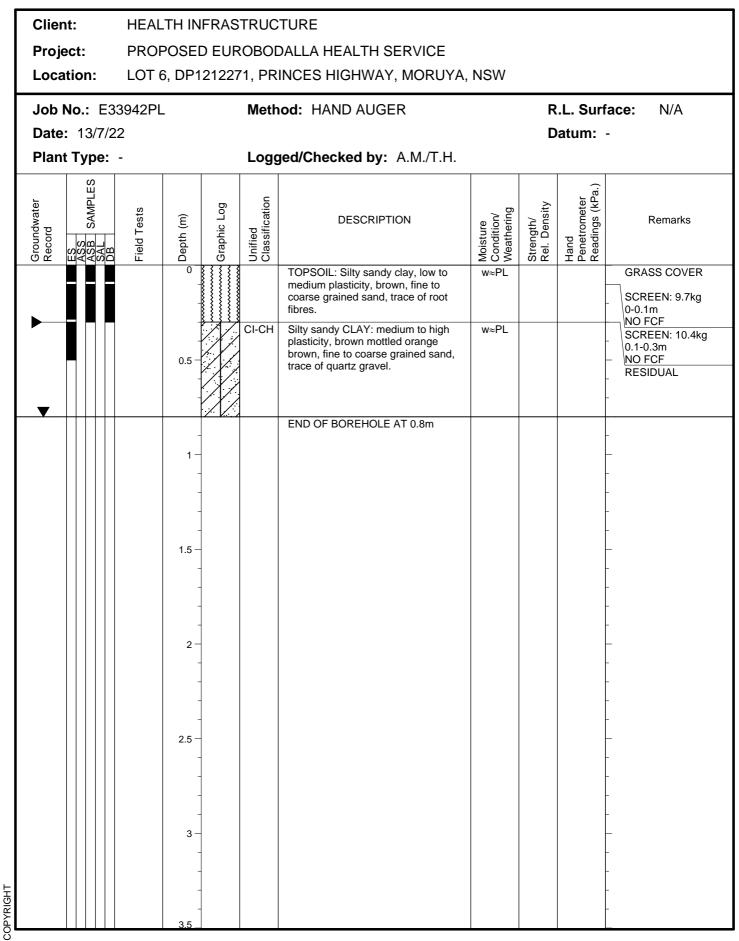

Client:	HEALTH IN	IFRASTRU	CTURE						
Project:	PROPOSED EUROBODALLA HEALTH SERVICE								
Location:	LOT 6, DP [.]	1212271, P	1, PRINCES HIGHWAY, MORUYA, NSW						
Job No.: E3	3942PL	Ме	hod: HAND AUGER		R	.L. Surf	ace: N/A		
Date: 12/7/2	22				Datum: -				
Plant Type:	-	Lo	Logged/Checked by: A.M./T.H.						
Groundwater Record <u>ES</u> <u>ASB</u> SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
	0		TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres, and trace of ash.	w≈PL		-	GRASS COVER SCREEN: 10.8kg 0-0.1m NO FCF SCREEN: 13.1kg		
	0.5 -	CI-CI	Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w≈PL			0.1-0.4m NO FCF RESIDUAL		
COPYRIGHT	1- 1.5- 2- 2.5- 3- 3.5		END OF BOREHOLE AT 0.8m				HAND AUGER REFUSAL ON INFERRED BEDROCK		

Environmental logs are not to be used for geotechnical purposes

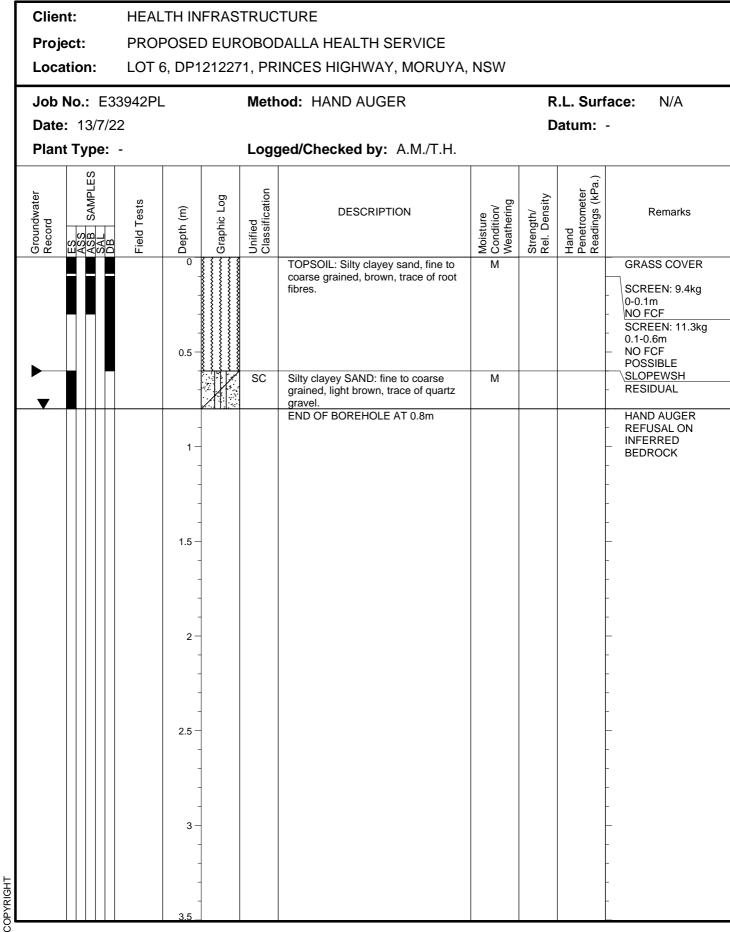


Log No.

113

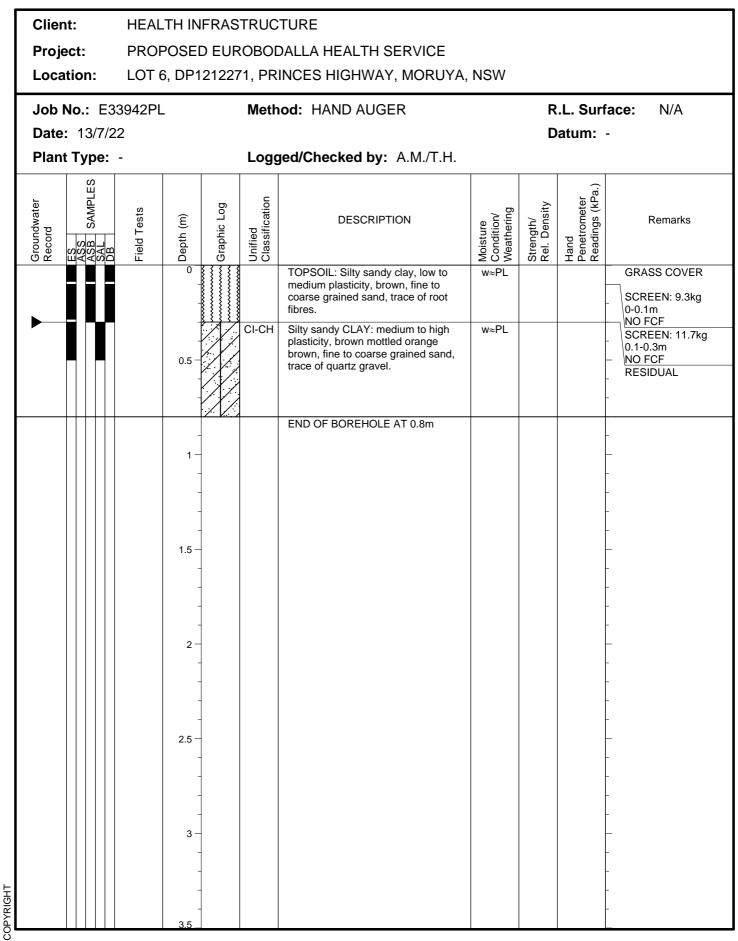


Environmental logs are not to be used for geotechnical purposes


Log No.

116

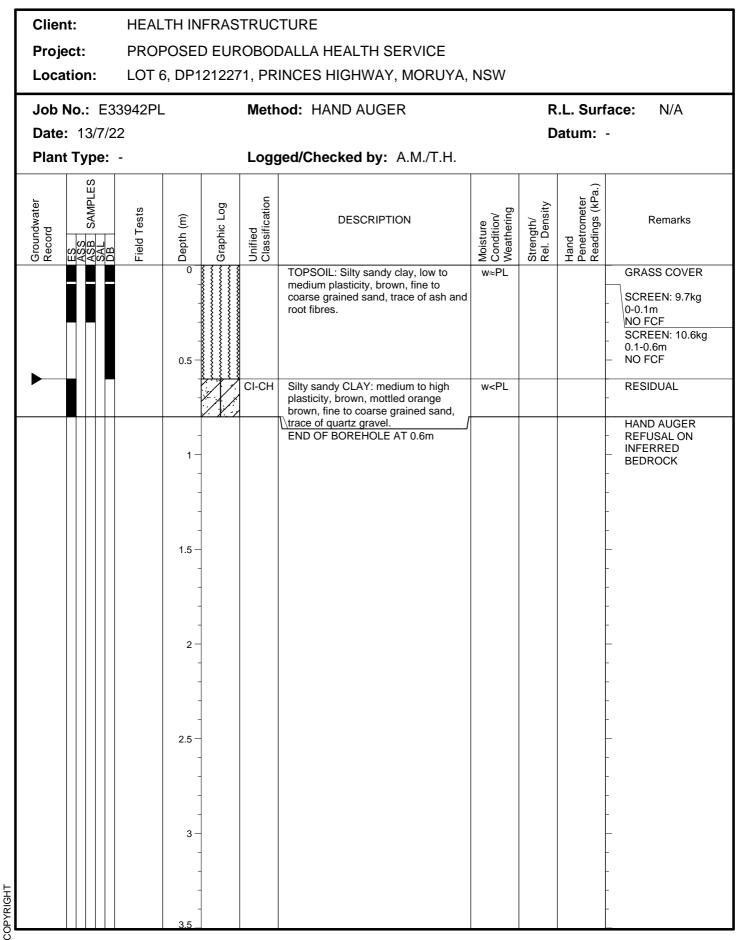
Environmental logs are not to be used for geotechnical purposes



Log No.

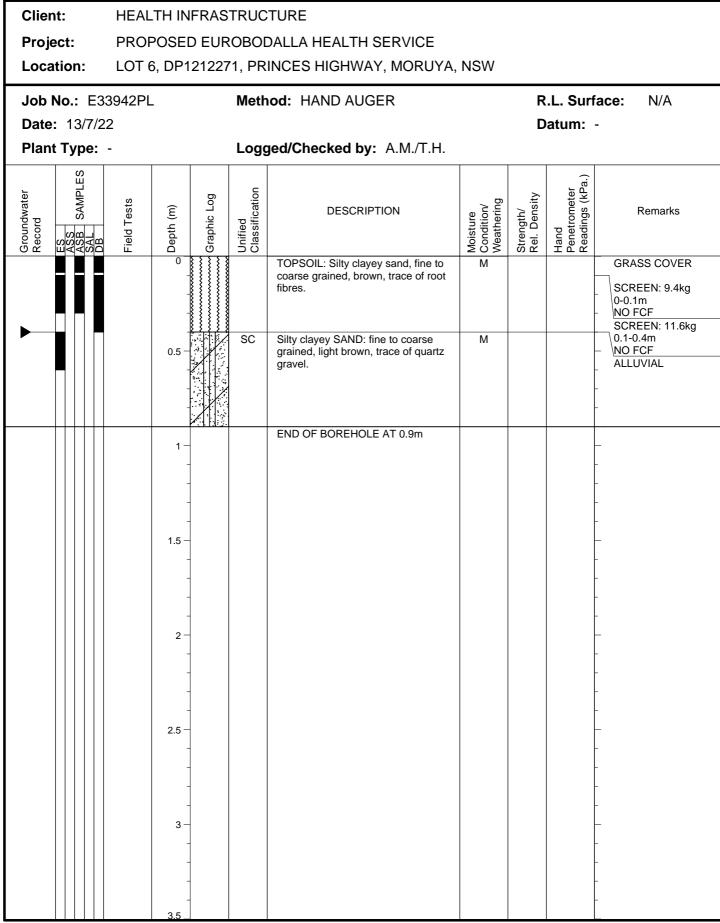
118

	Clier	nt:	HEALT	TH IN	FRAS	TRUC	TURE						
	Proj	ect:	PROPOSED EUROBODALLA HEALTH SERVICE										
	Loca	ation:	LOT 6,	DP1	21227	1, PRINCES HIGHWAY, MORUYA, NSW							
ľ	Job No.: E33942PL Date: 13/7/22						od: HAND AUGER	R.L. Surface: N/A Datum: -					
	Plan	t Type:	-			Logged/Checked by: A.M./T.H.							
	Groundwater Record	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
	•			0 -			TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres.	w≈PL			GRASS COVER SCREEN: 11.6kg 0-0.1m - NO FCF SCREEN: 11.4kg		
				0.5 -		CI-CH	Silty sandy CLAY: low to medium plasticity, brown mottled orange brown, fine to coarse grained sand.	w≈PL			0.1-0.4m NO FCF RESIDUAL		
COPYRIGHT							END OF BOREHOLE AT 0.8m				HAND AUGER REFUSAL ON INFERRED BEDROCK		



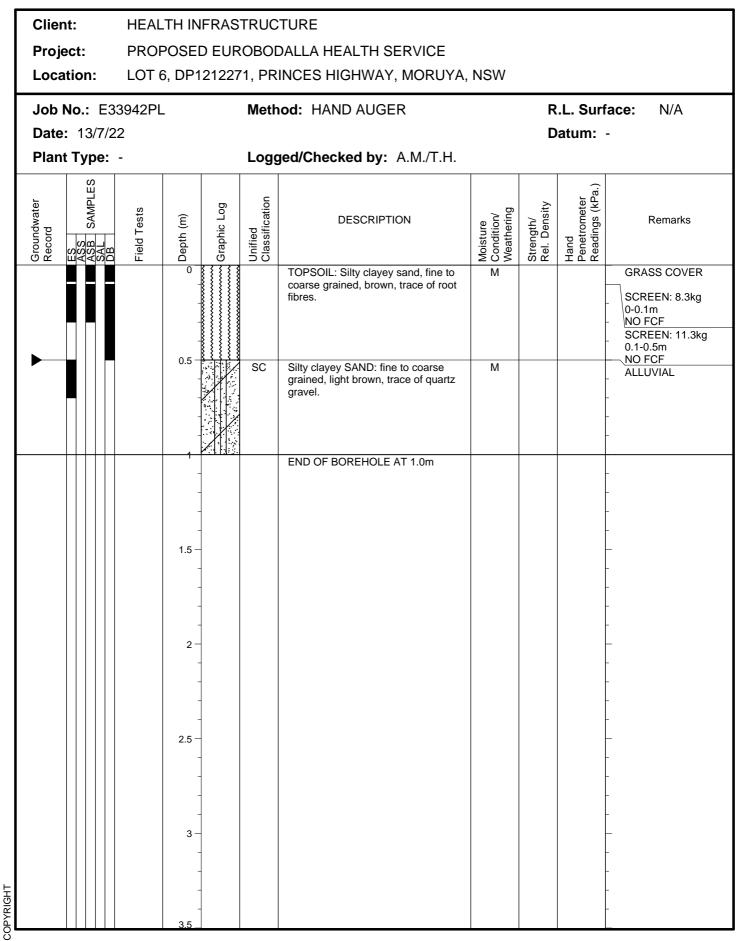
Environmental logs are not to be used for geotechnical purposes

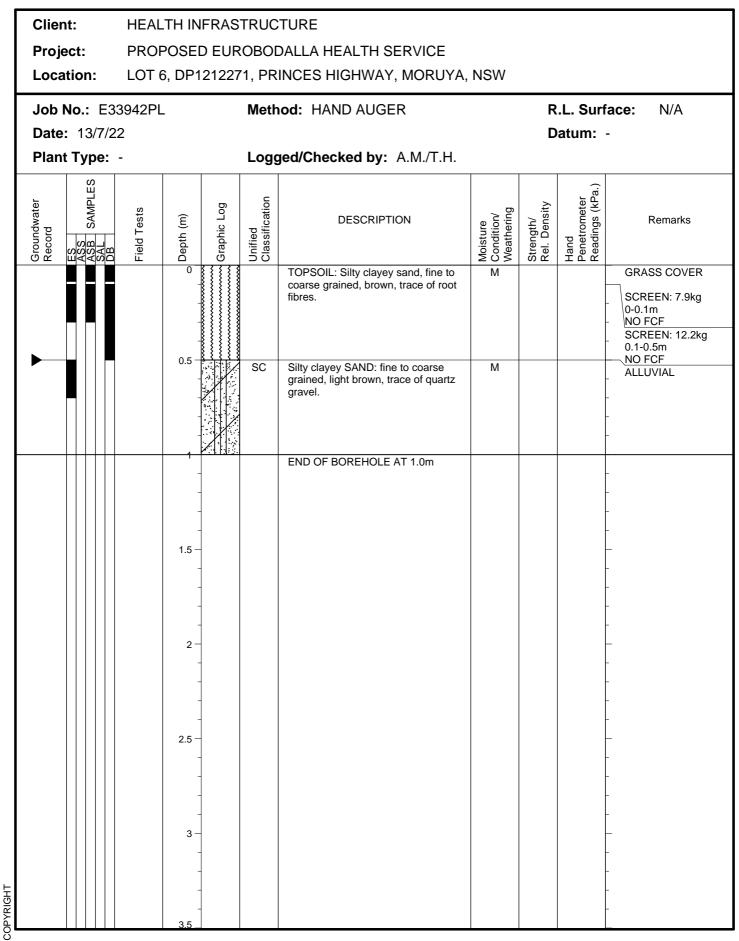
	Clie	nt:	HEALTH INFRASTRUCTURE										
	Proj	ect:	PROF	POSEI		ROBOL	DALLA HEALTH SERVICE	{VICE					
	Loca	ation:	LOT 6	6, DP1	21227	71, PR	INCES HIGHWAY, MORUYA,	NSW					
ľ	Job	No.: E3	3942PL			Meth	lethod: HAND AUGER			R.L. Surface: N/A			
	Date: 13/7/22								D	atum:	-		
	Plan	t Type:	-			Logged/Checked by: A.M./T.H.							
	Groundwater Record	ES ASS ASB SAMPLES SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
							TOPSOIL: Silty clayey sand, fine to coarse grained, brown, trace of ash and root fibres.	Μ		-	GRASS COVER SCREEN: 8.3kg 0-0.1m NO FCF SCREEN: 12.1kg		
				0.5		SC	Silty clayey SAND: fine to coarse grained, light brown, trace of quartz gravel.	M		-	0.1-0.4m NO FCF ALLUVIAL		
				- 1 — -			END OF BOREHOLE AT 0.8m			-	- - - -		
				- - 1.5 — -						-			
				- 2 -						-	- - -		
				- 2.5 — - -	-					-	- - -		
HT											-		
COPYRIGHT				- 3.5							-		


Log No. 121 1/1

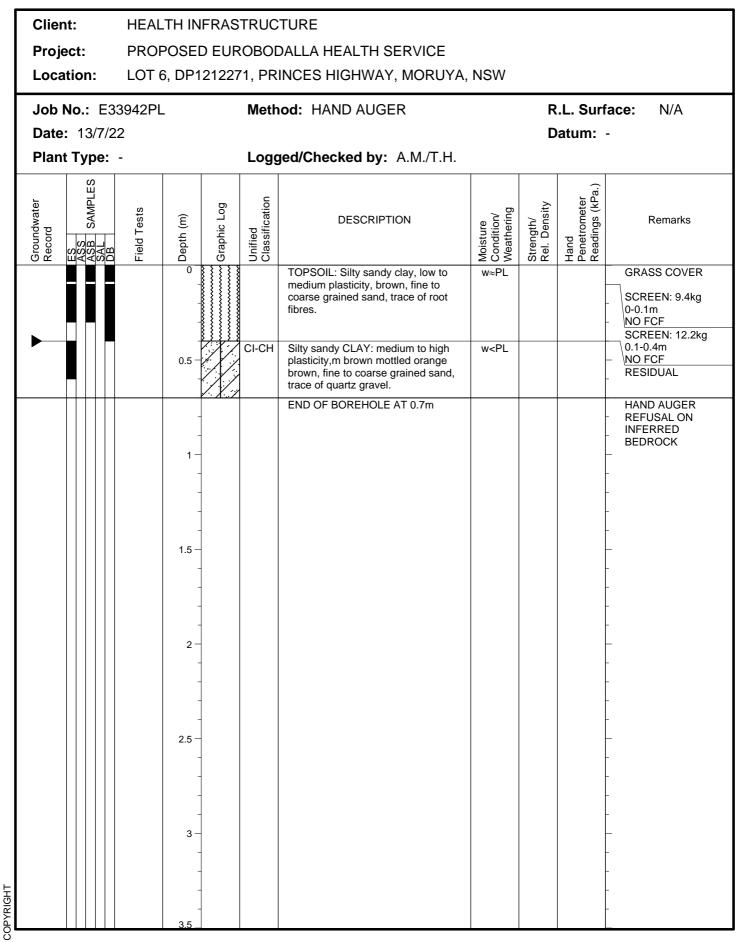
Environmental logs are not to be used for geotechnical purposes

Log No. 122

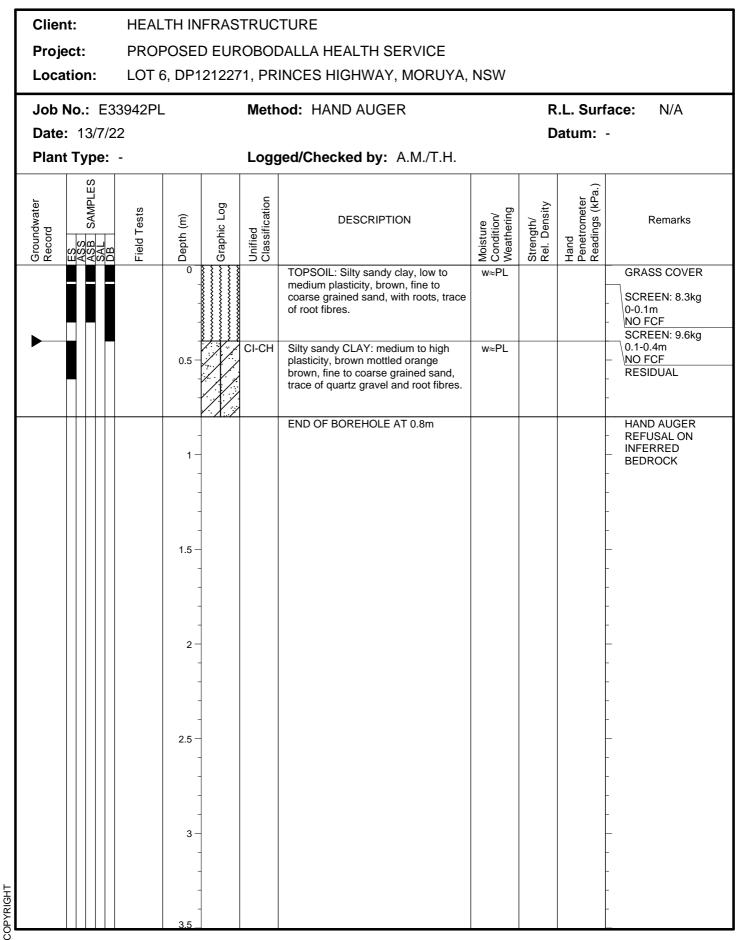

Environmental logs are not to be used for geotechnical purposes


COPYRIGHT

Environmental logs are not to be used for geotechnical purposes


Log No.

124



Environmental logs are not to be used for geotechnical purposes

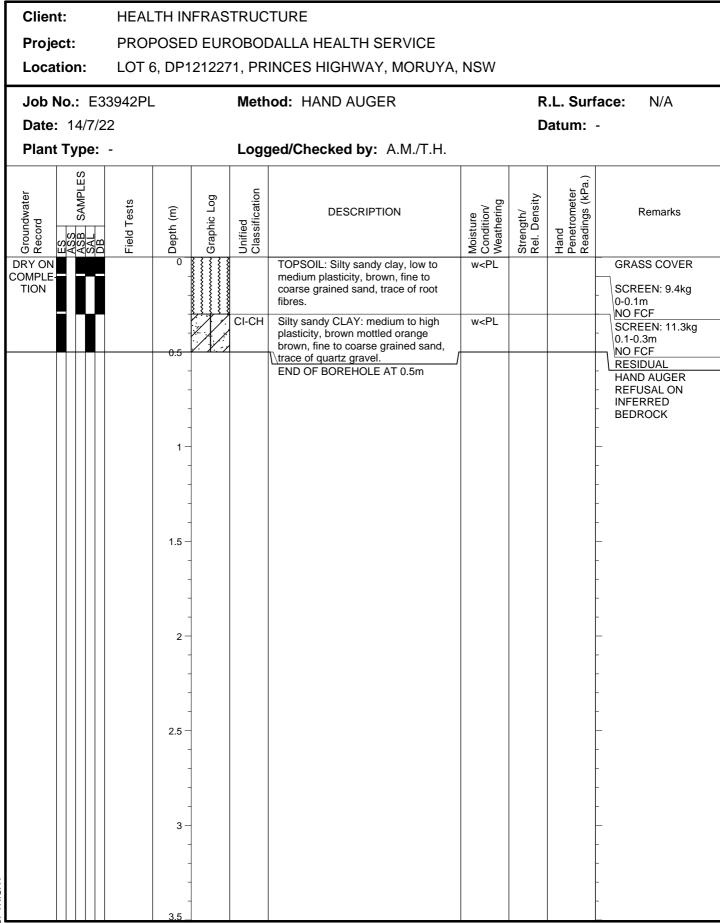
Log No. 126 1/1

Environmental logs are not to be used for geotechnical purposes

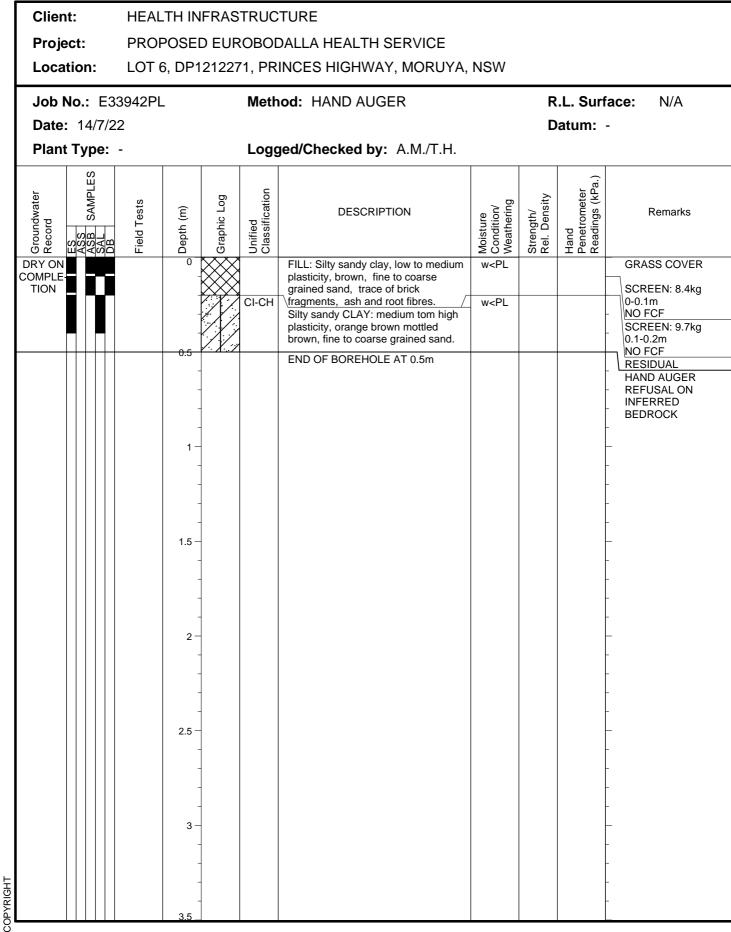
Log No.

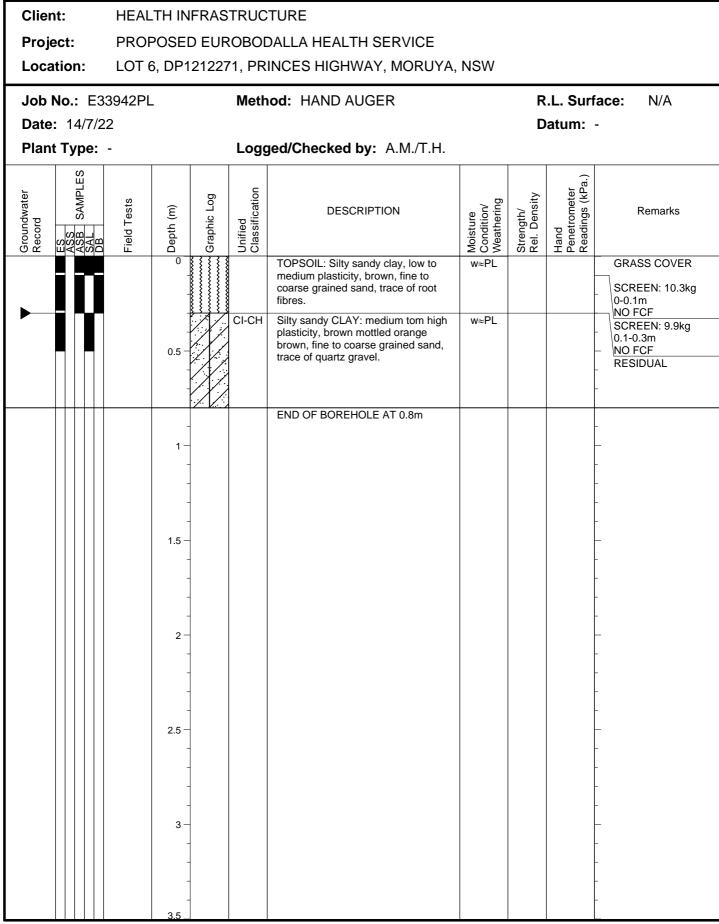
127

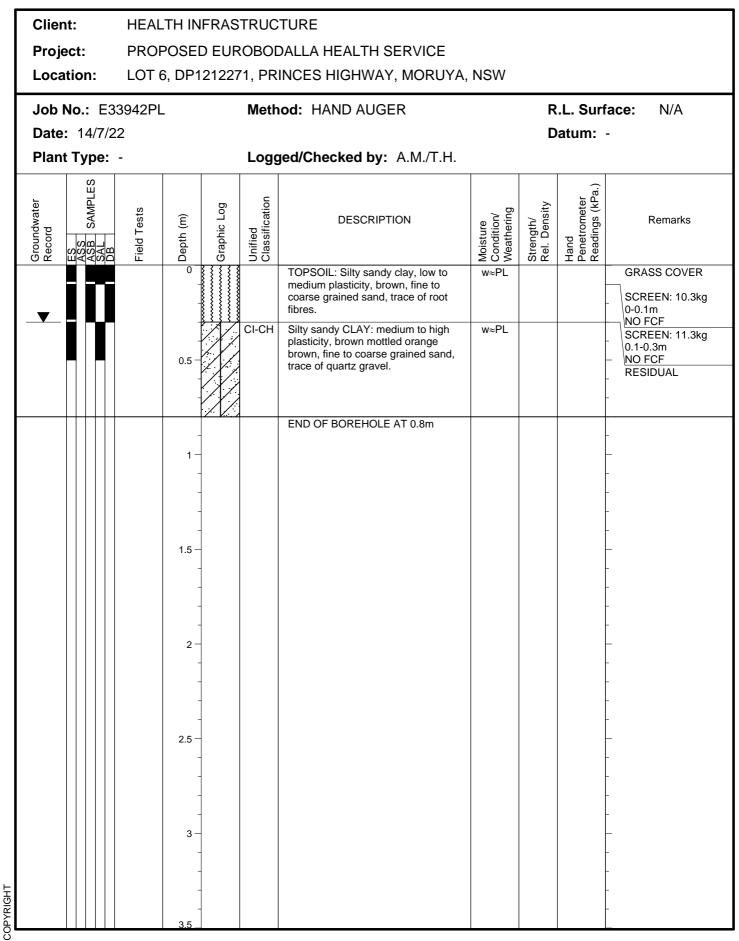
Client:	HEALTH IN	IFRASTR	JCTURE						
Project:	PROPOSED EUROBODALLA HEALTH SERVICE								
Location:	LOT 6, DP1	212271, I	I, PRINCES HIGHWAY, MORUYA, NSW						
Job No.: E3	3942PL	M	Method: HAND AUGER			R.L. Surface: N/A			
Date: 14/7/2	2				Datum: -				
Plant Type:	-	Lo	Logged/Checked by: A.M./T.H.						
Groundwater Record <u>ES</u> <u>ASB</u> SAMPLES <u>SA</u>	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
	0	*****	TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres.	w≈PL		-	GRASS COVER SCREEN: 8.6kg 0-0.1m NO FCF		
	0.5 -	CI-O	CH Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w≈PL		-	SCREEN: 12.2kg 0.1-0.3m NO FCF RESIDUAL		
COPYRIGHT			END OF BOREHOLE AT 0.7m				HAND AUGER REFUSAL ON INFERRED BEDROCK		

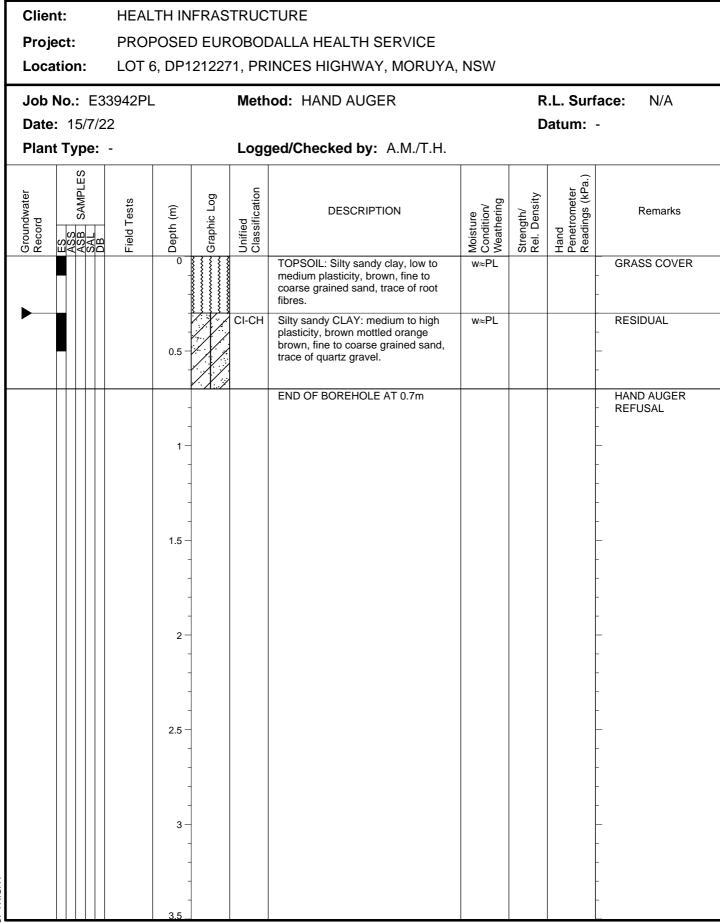


Client:	HEALTH IN	EALTH INFRASTRUCTURE								
Project:	PROPOSE	D EUR	ROBOE	DALLA HEALTH SERVICE						
Location:	LOT 6, DP1	21227	71, PR	INCES HIGHWAY, MORUYA,	NSW					
Job No.: E3	3942PL		Meth	od: HAND AUGER		R	.L. Surf	ace: N/A		
Date: 14/7/22	2					D	atum:	-		
Plant Type:	-		Logo	jed/Checked by: A.M./T.H.						
Groundwater Record ES AS AS SAL DB SAPLES	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLE- TION	0	······		TOPSOIL: Silty clay, low to medium plasticity, brown, trace of sand, and root fibres.	w≈PL			GRASS COVER SCREEN: 9.5kg 0-0.1m - NO FCF SCREEN: 10.2kg		
	0.5 -		CI-CH	Silty CLAY: medium to high plasticity, brown mottled orange brown, trace of sand.	w≈PL			O.1-0.4m - NO FCF - RESIDUAL		
				END OF BOREHOLE AT 0.7m				HAND AUGER REFUSAL ON INFERRED BEDROCK		


	Clier	nt:	HEAL	TH IN	FRAS	TRUC	TURE				
	Proj	ect:	PROF	POSE	DEUR	ROBO	DALLA HEALTH SERVICE				
	Loca	ation:	LOT 6	6, DP1	21227	71, PR	INCES HIGHWAY, MORUYA,	NSW			
	Job	No.: E3	3942PL	-		Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
	Date	: 14/7/2	2						D	atum:	-
	Plan	t Type:	-			Logo	ged/Checked by: A.M./T.H.				
	Groundwater Record	ES ASS ASB SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	DRY ON	1		0			TOPSOIL: Silty sandy clay,m low to medium plasticity, brown, fine to	w <pl< th=""><th></th><th></th><th>GRASS COVER</th></pl<>			GRASS COVER
	TION						coarse grained sand, trace of root				SCREEN: 6.2kg
							END OF BOREHOLE AT 0.2m				- <u>NO FCF</u> SCREEN: 8.5kg 0.1-0.2m - NO FCF
				-							HAND AUGER REFUSAL ON INFERRED BEDROCK
				1							-
				- 1.5 — -							- - -
				- 2 -							- - - -
				- 2.5 — - -							- - - -
				- 3 -							-
COPYRIGHT				- - 3.5							-


Environmental logs are not to be used for geotechnical purposes


Log No. 132 1/1

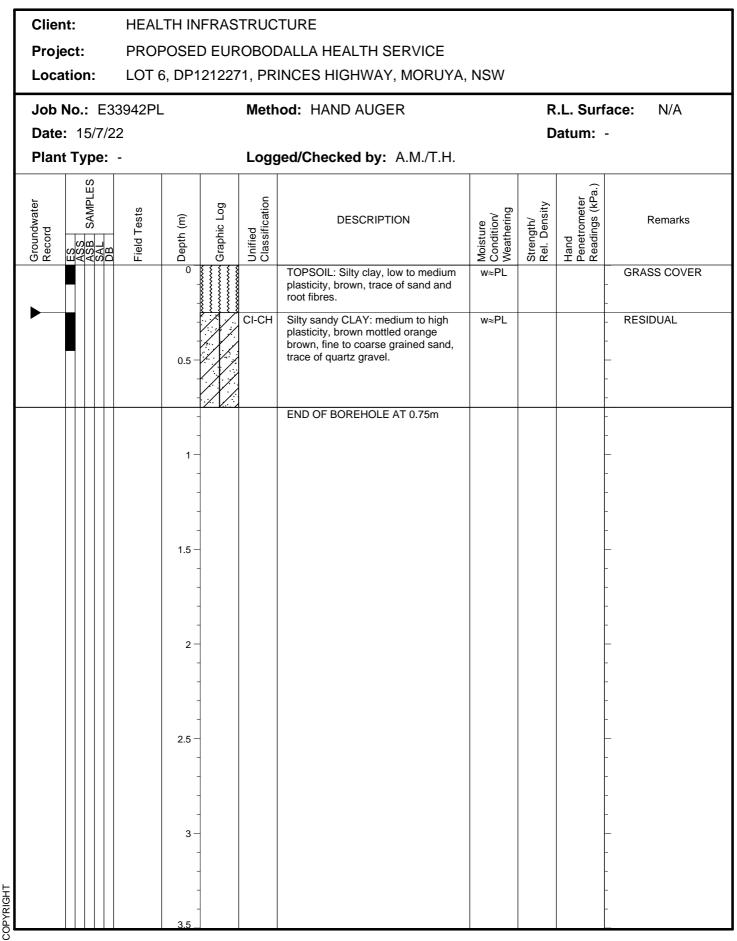


Client:	HEALTH IN	IFRAST	RUC	TURE				
Project:	PROPOSE	D EURC	OBOD	OALLA HEALTH SERVICE				
Location:	LOT 6, DP1	212271	I, PRINCES HIGHWAY, MORUYA, NSW					
Job No.: E3	3942PL		Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
Date: 13/7/2	2					D	atum:	-
Plant Type:	-		Logg	ed/Checked by: A.M./T.H.				
Groundwater Record ASS ASE DB DB	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	0	*****		TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres.	w≈PL			GRASS COVER SCREEN: 9.6kg 0-0.1m NO FCF
	0.5 -		CI-CH	Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w≈PL			SCREEN: 10.9kg 0.1-0.3m - NO FCF RESIDUAL
COPYRIGHT				END OF BOREHOLE AT 0.8m				HAND AUGER REFUSAL ON INFERRED BEDROCK

	Clie	nt:	HEAL	HEALTH INFRASTRUCTURE							
	Proj	ect:	PROF	POSEI) EUR		OALLA HEALTH SERVICE				
	Loca	ation:	LOT 6	6, DP1	21227	'1, PR	INCES HIGHWAY, MORUYA,	NSW			
ſ		No.: E33				Meth	od: HAND AUGER			.L. Surf	
		: 13/7/22				_			D	atum:	-
	Plan	t Type:	-			Logo	jed/Checked by: A.M./T.H.				
	Groundwater Record	ES ASS SAMPLES SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
				0 - -			TOPSOIL: Silty clayey sand, fine to coarse grained, brown, trace of ash and root fibres.	M			GRASS COVER SCREEN: 9.7kg 0-0.1m - NO FCF SCREEN: 10.6kg
				- 0.5 -		SC	Silty clayey SAND: fine to coarse grained, light brown.	М			0.1-0.4m
				-				W			ALLUVIAL
F				- 1-	: . 173:3-3-		END OF BOREHOLE AT 1.0m				
				- - - - - - - - - - - - - - - - - - -							
COPYRIGHT				- 3.5							-

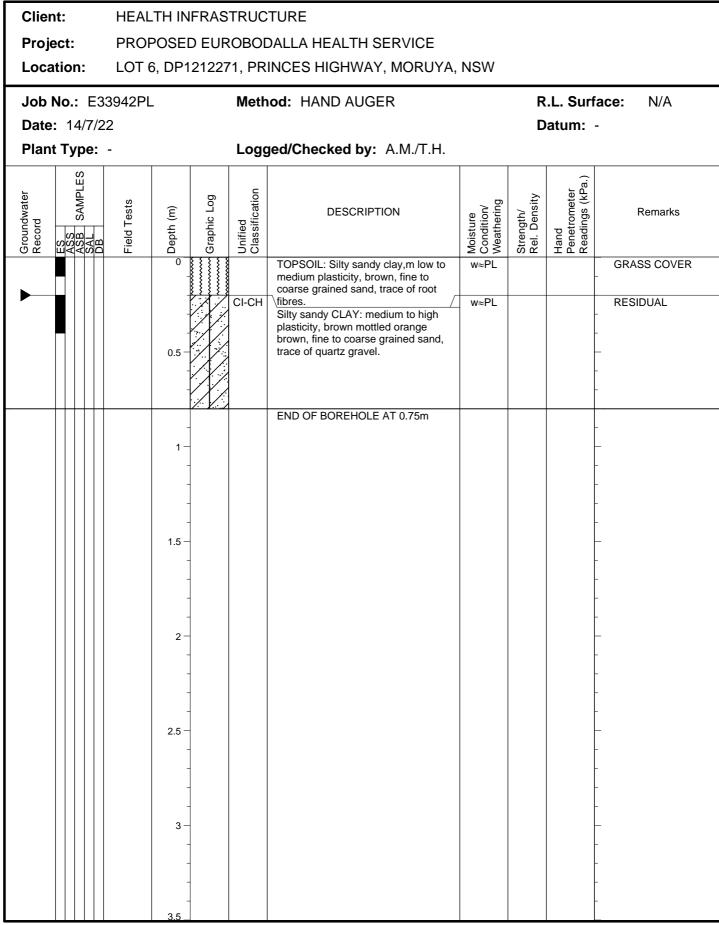
Environmental logs are not to be used for geotechnical purposes

Log No.


138

1/1

Client:	HEALTH IN	ALTH INFRASTRUCTURE							
Project:	PROPOSE	D EUR	ОВОГ	OALLA HEALTH SERVICE					
Location:	LOT 6, DP1	21227	1, PR	NCES HIGHWAY, MORUYA,	NSW				
Job No.: E3	3942PL		Meth	od: HAND AUGER		R	.L. Surf	ace: N/A	
Date: 15/7/2	2					D	atum:		
Plant Type:	-		Logg	ed/Checked by: A.M./T.H.					
Groundwater Record ASS ASE DB DB	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
	0	*****		TOPSOIL: Silty sandy clay, low to medium plasticity, brown, fine to coarse grained sand, trace of root fibres.	w≈PL		-	GRASS COVER	
	0.5 -		CI-CH	Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w≈PL			RESIDUAL -	
COPYRIGHT				END OF BOREHOLE AT 0.7m				HAND AUGER REFUSAL ON INFERRED BEDROCK	



Environmental logs are not to be used for geotechnical purposes

ſ	Clie	nt:	HEAL	TH IN	FRAS	TRUC	TURE					
	Proj	ect:	PROF	POSEI		ROBOE	DALLA HEALTH SERVICE					
	Loca	ation:	LOT 6	6, DP1	21227	71, PR	, PRINCES HIGHWAY, MORUYA, NSW					
Ī	Job	No.: E3	3942PL	-		Meth	od: HAND AUGER		R	.L. Surf	ace: N/A	
	Date	e: 15/7/2	2						D	atum:	-	
	Plan	t Type:	-			Logo	ged/Checked by: A.M./T.H.					
	Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
				0 			TOPSOIL: Silty clay, low to medium plasticity, brown, trace of sand and root fibres.	w≈PL			GRASS COVER	
				- 0.5 - - -		CI-CH	Silty sandy CLAY: medium to high plasticity, brown mottled orange brown, fine to coarse grained sand, trace of quartz gravel.	w≈PL			RESIDUAL	
-				1 — - -			END OF BOREHOLE AT 0.9m				-	
				- 1.5 — - -							-	
				- 2 - -							-	
				- 2.5 - - - -							- - - -	
COPYRIGHT				3 - - - - 3.5							-	

Log No. 141 1/1

Environmental logs are not to be used for geotechnical purposes

Log No.

142

1/1

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤12
Soft (S)	> 25 and \leq 50	> 12 and \leq 25
Firm (F)	> 50 and \leq 100	> 25 and \leq 50
Stiff (St)	$>$ 100 and \leq 200	> 50 and ≤ 100
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

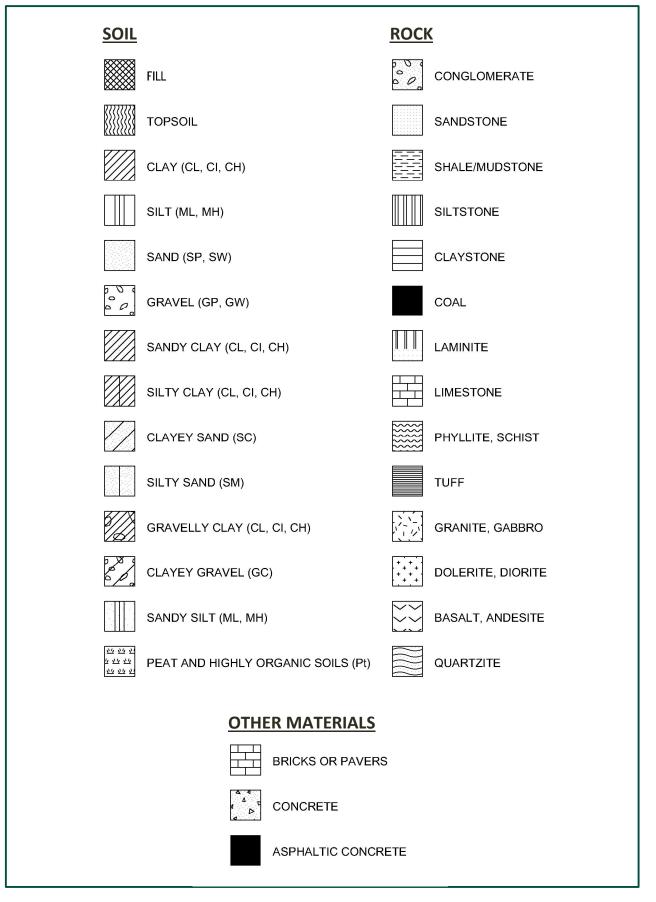
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

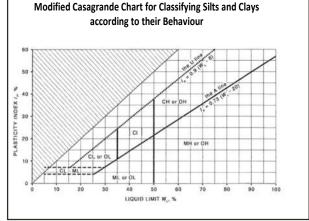
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification	
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>	
oversize fraction is	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt	
e than 65% of soil exclu greater than 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay	
than 65% sater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>	
ail (mare. gn	SAND (more SW than half of coarse fraction is smaller than 2.36mm) SM SC		Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
egraineds			Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty		
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A	

		Group			Laboratory Classification		
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
gnbu	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
inegrained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m te fracti	(high plasticity)		Inorganic clay of high plasticity	High to very high	None	High	Above A line
regrained		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition						
Groundwater Record	—	Standing water level. Ti	me delay following compl	etion of drilling/excavation may be shown.				
	— с —	Extent of borehole/test	pit collapse shortly after o	drilling/excavation.				
		Groundwater seepage i	nto borehole or test pit no	oted during drilling or excavation.				
Samples	ES	Sample taken over dept	h indicated, for environm	ental analysis.				
	U50	Undisturbed 50mm diar	neter tube sample taken	over depth indicated.				
	DB		Bulk disturbed sample taken over depth indicated.					
	DS	-	nple taken over depth ind					
	ASB		lepth indicated, for asbes	-				
	ASS		lepth indicated, for acid s	-				
	SAL	Soil sample taken over o	lepth indicated, for salinit	y analysis.				
	PFAS	Soil sample taken over o	lepth indicated, for analys	sis of Per- and Polyfluoroalkyl Substances.				
Field Tests	N = 17 4, 7, 10		150mm penetration. 'Refu	tween depths indicated by lines. Individual isal' refers to apparent hammer refusal within				
	N _c = 5	Solid Cone Penetration	Test (SCPT) performed b	etween depths indicated by lines. Individual				
	7	figures show blows per :	150mm penetration for 60	0° solid cone driven by SPT hammer. 'R' refers				
	3R	to apparent hammer re	fusal within the correspor	nding 150mm depth increment.				
	VNS = 25	Vano shoar roading in k	Pa of undrained shear stre	anoth				
	PID = 100	-		-				
	FID = 100		Photoionisation detector reading in ppm (soil sample headspace test).					
Moisture Condition	w > PL		Moisture content estimated to be greater than plastic limit.					
(Fine Grained Soils)	w≈PL	Moisture content estimated to be approximately equal to plastic limit.						
	w < PL	Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit						
	w≈LL w>LL		Moisture content estimated to be near liquid limit.					
(Coorse Crained Saile)			Moisture content estimated to be wet of liquid limit.					
(Coarse Grained Soils)	D	DRY – runs freely t		vicible on soil surface				
	M W	MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface.						
Strongth (Consistoney)								
Strength (Consistency) Cohesive Soils	VS S		fined compressive streng					
	F		fined compressive streng					
	St			th > 50kPa and \leq 100kPa.				
	VSt			th > 100kPa and \leq 200kPa.				
	Hd			th > 200kPa and \leq 400kPa.				
	Fr		fined compressive streng					
	()		gth not attainable, soil cru					
		assessment.	cates estimated consiste	ncy based on tactile examination or other				
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)				
(Cohesionless Soils)	VL	VERY LOOSE	≤15	0-4				
	L	LOOSE	$>$ 15 and \leq 35	4-10				
	MD	MEDIUM DENSE	$>$ 35 and \leq 65	10-30				
	D	DENSE	$>$ 65 and \leq 85	30 – 50				
	VD	VERY DENSE	> 85	> 50				
	()	Bracketed symbol indica	ates estimated density bas	sed on ease of drilling or other assessment.				

Log Column	Symbol	Definition					
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individ test results on representative undisturbed material unless noted otherwise.					
Remarks	'V' bit	Hardened steel 'V' shaped bit.					
	'TC' bit	Twin pronged tungsten carbide bit.					
	T_{60}	Penetration of au without rotation	iger string in mm under static load of rig applied by drill head hydraulics of augers.				
	Soil Origin	The geological or	igin of the soil can generally be described as:				
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 				
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 				
		ALLUVIAL	 soil deposited by creeks and rivers. 				
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 				
		MARINE	 soil deposited in a marine environment. 				
		AEOLIAN	 soil carried and deposited by wind. 				
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 				
		LITTORAL	 beach deposited soil. 				

Classification of Material Weathering

Term		Abbreviation		Definition
Residual Soil	Soil		RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		S	SW Rock is partially discoloured with staining or bleaching along joints but sh little or no change of strength from fresh rock.	
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering.* The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength				
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment			
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.			
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			

Appendix E: Laboratory Reports & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 300620

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33942PL, Moruya
Number of Samples	129 Soil, 1 Water
Date samples received	15/07/2022
Date completed instructions received	15/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 22/07/2022

 Date of Issue
 22/07/2022

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Senior Chemist Liam Timmins, Organic Instruments Team Leader Lucy Zhu, Asbestos Supervisor

Nick Sarlamis, Assistant Operation Manager

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	115	121	122	110	96
			1			
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
	UNITS	300620-16 BH106	300620-19 BH107	300620-22 BH108	300620-25 BH109	300620-28 BH110
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Our Reference Your Reference Depth	UNITS	BH106 0 - 0.1	BH107 0 - 0.1	BH108 0 - 0.1	BH109 0 0.1	BH110 0 - 0.1
Our Reference Your Reference Depth Date Sampled	UNITS -	BH106 0 - 0.1 12/07/2022	BH107 0 - 0.1 12/07/2022	BH108 0 - 0.1 12/07/2022	BH109 0 0.1 12/07/2022	BH110 0 - 0.1 12/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH106 0 - 0.1 12/07/2022 Soil	BH107 0 - 0.1 12/07/2022 Soil	BH108 0 - 0.1 12/07/2022 Soil	BH109 0 0.1 12/07/2022 Soil	BH110 0 - 0.1 12/07/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH106 0 - 0.1 12/07/2022 Soil 19/07/2022	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022	BH109 0 0.1 12/07/2022 Soil 19/07/2022	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH106 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022	BH109 0 0.1 12/07/2022 Soil 19/07/2022 19/07/2022	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	BH106 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25	BH109 0 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH106 0-0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH109 0 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH110 0-0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH106 0-0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH109 0 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH106 0 - 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2	BH109 0 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH106 0-0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH109 0 0.1 12/07/2022 Soil 19/07/2022 (19/07/2022 (25) <25 <25 <25 <0.2	BH110 0-0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH106 0-0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH109 0 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH106 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH109 0 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.5 <1 (2)	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH106 0-0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5	BH107 0 - 0.1 12/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	BH108 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5	BH109 0 0.1 12/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <0.5	BH110 0 - 0.1 12/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	115	110	113	113
5	1		1		1	
vTRH(C6-C10)/BTEXN in Soil			1			
vTRH(C6-C10)/BTEXN in Soil Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
	UNITS	300620-45 BH116	300620-48 BH117	300620-51 BH118	300620-54 BH119	300620-57 BH120
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Our Reference Your Reference Depth	UNITS	BH116 0 - 0.1	BH117 0 - 0.1	BH118 0 - 0.1	BH119 0 - 0.1	BH120 0 - 0.1
Our Reference Your Reference Depth Date Sampled	UNITS	BH116 0 - 0.1 14/07/2022	BH117 0 - 0.1 13/07/2022	BH118 0 - 0.1 13/07/2022	BH119 0 - 0.1 13/07/2022	BH120 0 - 0.1 13/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH116 0 - 0.1 14/07/2022 Soil	BH117 0 - 0.1 13/07/2022 Soil	BH118 0 - 0.1 13/07/2022 Soil	BH119 0 - 0.1 13/07/2022 Soil	BH120 0 - 0.1 13/07/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH116 0 - 0.1 14/07/2022 Soil 19/07/2022	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH116 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	BH116 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH116 0-0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH116 0-0.1 14/07/2022 Soil 19/07/2022 (19/07/2022 (25 <25 <25 <25 <0.2 <0.2	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH116 0-0.1 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH116 0 - 0.1 14/07/2022 Soil 19/07/2022 (19/07/2022 (25) <25 <25 <25 <25 <0.2 <0.5 <1 (2) <1 (2)	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 425 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH116 0-0.1 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5	BH117 0-0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XyleneNaphthalene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH116 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.5 <1 <2	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5 <1 <2 <1 <2 <1 <1 <1	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH116 0-0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5	BH117 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	BH118 0 - 0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5	BH119 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1 <2 <1	BH120 0 - 0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-71
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH124
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0.5 - 0.7
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	115	122	105	104	110
vTRH(C6-C10)/BTEXN in Soil						
		300620-72	300620-75	300620-78	300620-81	300620-83
vTRH(C6-C10)/BTEXN in Soil	UNITS	300620-72 BH125	300620-75 BH126	300620-78 BH127	300620-81 BH128	300620-83 BH128
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	BH125	BH126	BH127	BH128	BH128
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	BH125 0 - 0.1	BH126 0 - 0.1	BH127 0 - 0.1	BH128 0 - 0.1	BH128 0.3 - 0.5
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	BH125 0 - 0.1 13/07/2022	BH126 0 - 0.1 13/07/2022	BH127 0 - 0.1 13/07/2022	BH128 0 - 0.1 13/07/2022	BH128 0.3 - 0.5 14/07/2022
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH125 0 - 0.1 13/07/2022 Soil	BH126 0 - 0.1 13/07/2022 Soil	BH127 0 - 0.1 13/07/2022 Soil	BH128 0 - 0.1 13/07/2022 Soil	BH128 0.3 - 0.5 14/07/2022 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022	BH127 0 - 0.1 13/07/2022 Soil 19/07/2022	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH127 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH127 0-0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH127 0-0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH127 0-0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2	BH127 0-0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 25 <25 <25 <25 <0.2 <0.2	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH127 0-0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH127 0-0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (19/07/2022 (25) <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH127 0-0.1 13/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	BH127 0-0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1 <2 <1	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		300620-84	300620-87	300620-90	300620-92	300620-94
Your Reference	UNITS	BH129	BH130	BH131	BH132	BH132
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	104	103	103	106
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		300620-95	300620-98	300620-100	300620-101	300620-104
	UNITS	300620-95 BH133	300620-98 BH134	300620-100 BH134	300620-101 BH135	300620-104 BH136
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH133	BH134	BH134	BH135	BH136
Our Reference Your Reference Depth	UNITS	BH133 0 - 0.1	BH134 0 - 0.1	BH134 0.3 - 0.5	BH135 0 - 0.1	BH136 0 - 0.1
Our Reference Your Reference Depth Date Sampled	UNITS -	BH133 0 - 0.1 14/07/2022	BH134 0 - 0.1 14/07/2022	BH134 0.3 - 0.5 14/07/2022	BH135 0 - 0.1 14/07/2022	BH136 0 - 0.1 14/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH133 0 - 0.1 14/07/2022 Soil	BH134 0 - 0.1 14/07/2022 Soil	BH134 0.3 - 0.5 14/07/2022 Soil	BH135 0 - 0.1 14/07/2022 Soil	BH136 0 - 0.1 14/07/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XyleneNaphthalene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <1 <1	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <2 <1 <1 <1	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH133 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	BH134 0 - 0.1 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <0.5	BH134 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1 <2 <1	BH135 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	BH136 0 - 0.1 14/07/2022 Soil 19/07/2022 19/07/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		300620-107	300620-109	300620-110	300620-112	300620-114
Your Reference	UNITS	BH137	BH137	BH138	BH139	BH140
Depth		0 - 0.1	0.4 - 0.6	0 - 0.1	0 - 0.1	0 - 0.1
' Date Sampled		13/07/2022	13/07/2022	15/07/2022	14/07/2022	15/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	100	101	110	94
vTRH(C6-C10)/BTEXN in Soil				1		
Our Reference		300620-116	300620-118	300620-126	300620-129	
Your Reference	UNITS	BH141	BH142	TBS101	TS101	
Depth		0 - 0.1	0 - 0.1	-	-	
Date Sampled		15/07/2022	14/07/2022	13/07/2022	13/07/2022	
Type of sample		Soil	Soil	Soil	Soil	
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	
TRH C6 - C9	mg/kg	<25	<25	<25	[NA]	
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	[NA]	
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	[NA]	
Benzene	mg/kg	<0.2	<0.2	<0.2	98%	
Toluene	mg/kg	<0.5	<0.5	<0.5	96%	
Ethylbenzene	mg/kg	<1	<1	<1	98%	
m+p-xylene	mg/kg	<2	<2	<2	96%	
o-Xylene	mg/kg	<1	<1	<1	98%	
Naphthalene	mg/kg	<1	<1	<1	[NA]	

<1

105

<1

95

<1

95

92

mg/kg

%

Total +ve Xylenes

Surrogate aaa-Trifluorotoluene

svTRH (C10-C40) in Soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	97	96	94	100
svTRH (C10-C40) in Soil	-	-	1			•
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100

<50

<50

<50

<100

<100

<50

94

<50

<50

<50

<100

<100

<50

91

<50

<50

<50

<100

<100

<50

96

<50

<50

<50

<100

<100

<50

92

<50

<50

<50

<100

<100

<50

92

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

Total +ve TRH (C10-C36)

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

TRH >C10 - C16 less Naphthalene (F2)

TRH >C10 -C16

TRH >C16 -C34

TRH >C34 -C40

svTRH (C10-C40) in Soil						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	96	93	95	95	102
svTRH (C10-C40) in Soil						
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed		40/07/0000	19/07/2022	19/07/2022	19/07/2022	19/07/2022
	-	19/07/2022	19/07/2022	19/01/2022	10/01/2022	10/01/2022
TRH C ₁₀ - C ₁₄	- mg/kg	<50	<50	<50	<50	<50
-	mg/kg					
TRH C ₁₀ - C ₁₄		<50	<50	<50	<50	<50
TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	mg/kg	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100
TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	mg/kg mg/kg	<50 <100 <100	<50 <100 <100	<50 <100 <100	<50 <100 <100	<50 <100 <100
TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	mg/kg mg/kg mg/kg	<50 <100 <100 <50	<50 <100 <100 <50	<50 <100 <100 <50	<50 <100 <100 <50	<50 <100 <100 <50
TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36) TRH >C ₁₀ -C ₁₆	mg/kg mg/kg mg/kg mg/kg	<50 <100 <100 <50 <50	<50 <100 <100 <50 <50	<50 <100 <100 <50 <50	<50 <100 <100 <50 <50	<50 <100 <100 <50 <50
TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36) TRH >C ₁₀ - C ₁₆ TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg	<50 <100 <100 <50 <50 <50	<50 <100 <100 <50 <50 <50	<50 <100 <100 <50 <50 <50	<50 <100 <100 <50 <50 <50	<50 <100 <100 <50 <50 <50

mg/kg

%

<50

100

<50

99

<50

99

<50

97

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

<50

95

svTRH (C10-C40) in Soil						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-71
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH124
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0.5 - 0.7
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	96	96	99	99	93
L						
svTRH (C10-C40) in Soil						
svTRH (C10-C40) in Soil Our Reference		300620-72	300620-75	300620-78	300620-81	300620-83
	UNITS	300620-72 BH125	300620-75 BH126	300620-78 BH127	300620-81 BH128	300620-83 BH128
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH125	BH126	BH127	BH128	BH128
Our Reference Your Reference Depth	UNITS	BH125 0 - 0.1	BH126 0 - 0.1	BH127 0 - 0.1	BH128 0 - 0.1	BH128 0.3 - 0.5
Our Reference Your Reference Depth Date Sampled	UNITS -	BH125 0 - 0.1 13/07/2022	BH126 0 - 0.1 13/07/2022	BH127 0 - 0.1 13/07/2022	BH128 0 - 0.1 13/07/2022	BH128 0.3 - 0.5 14/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH125 0 - 0.1 13/07/2022 Soil	BH126 0 - 0.1 13/07/2022 Soil	BH127 0 - 0.1 13/07/2022 Soil	BH128 0 - 0.1 13/07/2022 Soil	BH128 0.3 - 0.5 14/07/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022	BH127 0 - 0.1 13/07/2022 Soil 19/07/2022	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022	BH127 0-0.1 13/07/2022 Soil 19/07/2022 20/07/2022	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50	BH127 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100	BH127 0-0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <50 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100	BH127 0-0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 19/07/2022 <50 <100 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50	BH127 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 <50 <100 <100 <100 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36) TRH >C ₁₀ -C ₁₆	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50	BH127 0-0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 <50 <100 <100 <50 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 - C16TRH >C10 - C16 less Naphthalene (F2)	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50	BH127 0-0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (19/07/2022 (19/07/2022) (19/07/202) (19/07/20) (19/07/202)
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)TRH >C_{16} -C_{34}	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH125 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50 <50 <100	BH126 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50 <100	BH127 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <50 <50 <50 <50 <50 <100	BH128 0 - 0.1 13/07/2022 Soil 19/07/2022 20/07/2022 <50 <100 <100 <50 <50 <50 <50 <100	BH128 0.3 - 0.5 14/07/2022 Soil 19/07/2022 (19/07/2022 (19/07/2022 (19/07/2022) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/202) (19/07/20) (19/07/20) (19/07/20) (19/07/20)

svTRH (C10-C40) in Soil	
Our Reference 300620-8	4 300620-87 300620-90 300620-92 300620-5
Your Reference UNITS BH129	BH130 BH131 BH132 BH132
Depth 0 - 0.1	0 - 0.1 0 - 0.1 0 - 0.1 0.3 - 0.5
Date Sampled 14/07/202	2 14/07/2022 14/07/2022 14/07/2022 14/07/202
Type of sample Soil	Soil Soil Soil Soil
Date extracted - 19/07/202	2 19/07/2022 19/07/2022 19/07/2022 19/07/202
Date analysed - 19/07/202	2 19/07/2022 19/07/2022 19/07/2022 19/07/202
TRH C10 - C14 mg/kg <50	<50 <50 <50 <50 <
TRH C15 - C28 mg/kg <100	<100 <100 <100 <100
TRH C ₂₉ - C ₃₆ mg/kg <100	<100 <100 <100 <100
Total +ve TRH (C10-C36) mg/kg <50	<50 <50 <50 <50 <
TRH >C10 -C16 mg/kg <50	<50 <50 <50 <50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2) mg/kg <50	<50 <50 <50 <50 <
TRH >C16 -C34 mg/kg <100	<100 <100 <100 <100
TRH >C ₃₄ -C ₄₀ mg/kg <100	<100 <100 <100 <100
Total +ve TRH (>C10-C40) mg/kg <50	<50 <50 <50 <50
Total +ve TRH (>C10-C40) mg/kg <50	<50
Surrogate o-Terphenyl % 92	
	91 90 91 96
Surrogate o-Terphenyl % 92 svTRH (C10-C40) in Soil	91 90 91 96
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil300620-9Our Reference300620-9Your ReferenceUNITSBH133	91 90 91 96 5 300620-98 300620-100 300620-101 300620-1
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil300620-9Our Reference300620-9Your ReferenceUNITSDepth0 - 0.1	91 90 91 96 5 300620-98 300620-100 300620-101 300620-1 5 300620-98 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil300620-5Our ReferenceUNITSYour ReferenceUNITSDepth0 - 0.1Date Sampled14/07/202	91 90 91 96 5 300620-98 300620-100 300620-101 300620-1 5 300620-98 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil300620-5Our ReferenceUNITSYour ReferenceUNITSDepth0 - 0.1Date Sampled14/07/202	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 6 BH134 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 Soil Soil Soil Soil
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil300620-52Our Reference300620-52Your ReferenceUNITSDepth0 - 0.1Date Sampled14/07/202Type of sampleSoil	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 6 BH134 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 3 Soil Soil Soil 2 19/07/2022 19/07/2022 19/07/2022
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 6 BH134 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 3 Soil Soil Soil 2 19/07/2022 19/07/2022 19/07/2022
Surrogate o-Terphenyl%92svTRH (C10-C40) in Soil	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 6 BH134 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 5 Soil Soil Soil 2 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022
Surrogate o-Terphenyl % 92 svTRH (C10-C40) in Soil 300620-5 Our Reference UNITS BH133 Depth 0 - 0.1 Date Sampled 14/07/202 Type of sample Soil Date extracted - Date analysed - TRH C10 - C14 mg/kg <50	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 6 BH134 BH134 BH135 BH136 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 3001 Soil Soil Soil 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 3 19/07/2022 19/07/2022 19/07/2022 3 19/07/2022 19/07/2022 19/07/2022
Surrogate o-Terphenyl % 92 svTRH (C10-C40) in Soil	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 BH134 BH135 BH136 6 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 14/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 3 4 4 50 4 50 3 4 50 4 50 4 50
Surrogate o-Terphenyl % 92 svTRH (C10-C40) in Soil 300620-9 Our Reference JUNITS BH133 Depth 0 - 0.1 Date Sampled 14/07/202 Type of sample Soil Date extracted - Date analysed - TRH C10 - C14 mg/kg <50	91 90 91 96 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 300620-100 300620-101 300620-101 5 300620-98 BH134 BH135 BH136 6 0 - 0.1 0.3 - 0.5 0 - 0.1 0 - 0.1 2 14/07/2022 14/07/2022 14/07/2022 14/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 2 19/07/2022 19/07/2022 19/07/2022 19/07/2022 3 <

mg/kg

mg/kg

mg/kg

%

<100

<100

<50

94

<100

<100

<50

96

<100

<100

<50

98

<100

<100

<50

95

TRH >C16 -C34

TRH >C34 -C40

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

<100

<100

<50

96

svTRH (C10-C40) in Soil						
Our Reference		300620-107	300620-109	300620-110	300620-112	300620-114
Your Reference	UNITS	BH137	BH137	BH138	BH139	BH140
Depth		0 - 0.1	0.4 - 0.6	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		13/07/2022	13/07/2022	15/07/2022	14/07/2022	15/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	96	91	91	95

svTRH (C10-C40) in Soil			
Our Reference		300620-116	300620-118
Your Reference	UNITS	BH141	BH142
Depth		0 - 0.1	0 - 0.1
Date Sampled		15/07/2022	14/07/2022
Type of sample		Soil	Soil
Date extracted	-	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C15 - C28	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C16-C34	mg/kg	<100	<100
TRH >C34 -C40	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	90	89

11/0/0

PAHs in Soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	88	87	74	85	92

PAHs in Soil						
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	78	68	93	77	91

PAHs in Soil						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.2	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	63	72	69	78	63

PAHs in Soil						
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	20/07/2022	20/07/2022	20/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	71	91	112	116	110

PAHs in Soil						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-71
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH124
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0.5 - 0.7
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	116	112	99	119	121

PAHs in Soil						
Our Reference		300620-72	300620-75	300620-78	300620-81	300620-83
Your Reference	UNITS	BH125	BH126	BH127	BH128	BH128
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		13/07/2022	13/07/2022	13/07/2022	13/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	21/07/2022	21/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	127	107	128	120	130

PAHs in Soil						
Our Reference		300620-84	300620-87	300620-90	300620-92	300620-94
Your Reference	UNITS	BH129	BH130	BH131	BH132	BH132
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	21/07/2022	21/07/2022	20/07/2022	20/07/2022	20/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	105	87	84	92

PAHs in Soil						
Our Reference		300620-95	300620-98	300620-100	300620-101	300620-104
Your Reference	UNITS	BH133	BH134	BH134	BH135	BH136
Depth		0 - 0.1	0 - 0.1	0.3 - 0.5	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.06	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	82	82	83	79	84

PAHs in Soil			
Our Reference		300620-107	300620-109
Your Reference	UNITS	BH137	BH137
Depth		0 - 0.1	0.4 - 0.6
Date Sampled		13/07/2022	13/07/2022
Type of sample		Soil	Soil
Date extracted	-	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	83	81

Organochlorine Pesticides in soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	89	87	85	98

Organochlorine Pesticides in soil					_	
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	89	87	87	90

Organochlorine Pesticides in soil				_	_	
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	90	88	94	100

Organochlorine Pesticides in soil				_	_	
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	20/07/2022	20/07/2022	20/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	93	99	103	98

Organochlorine Pesticides in soil				_		
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-72
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH125
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	96	85	113	111

Organochlorine Pesticides in soil				_	_	
Our Reference		300620-75	300620-78	300620-81	300620-84	300620-87
Your Reference	UNITS	BH126	BH127	BH128	BH129	BH130
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		13/07/2022	13/07/2022	13/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	21/07/2022	21/07/2022	21/07/2022
Date analysed	-	20/07/2022	20/07/2022	21/07/2022	21/07/2022	21/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	112	100	97	91

Organochlorine Pesticides in soil						
Our Reference		300620-90	300620-92	300620-95	300620-98	300620-101
Your Reference	UNITS	BH131	BH132	BH133	BH134	BH135
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	75	73	71	73

Organochlorine Pesticides in soil			
Our Reference		300620-104	300620-107
Your Reference	UNITS	BH136	BH137
Depth		0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022
Type of sample		Soil	Soil
Date extracted	-	20/07/2022	20/07/2022
Date analysed	-	20/07/2022	20/07/2022
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	73	74

Organophosphorus Pesticides in Soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	89	87	85	98

Organophosphorus Pesticides in Soil						
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	89	87	87	90

Organophosphorus Pesticides in Soil						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	90	88	94	100

Organophosphorus Pesticides in Soil						
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	20/07/2022	20/07/2022	20/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	93	99	103	98

Organophosphorus Pesticides in Soil						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-72
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH125
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	96	85	113	111

Organophosphorus Pesticides in Soil						
Our Reference		300620-75	300620-78	300620-81	300620-84	300620-87
Your Reference	UNITS	BH126	BH127	BH128	BH129	BH130
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		13/07/2022	13/07/2022	13/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	21/07/2022	21/07/2022	21/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	112	100	97	91

Organophosphorus Pesticides in Soil						
Our Reference		300620-90	300620-92	300620-95	300620-98	300620-101
Your Reference	UNITS	BH131	BH132	BH133	BH134	BH135
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	75	73	71	73

Organophosphorus Pesticides in Soil			
Our Reference		300620-104	300620-107
Your Reference	UNITS	BH136	BH137
Depth		0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022
Type of sample		Soil	Soil
Date extracted	-	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	73	74

PCBs in Soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	89	87	85	98

PCBs in Soil						
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	89	87	87	90

PCBs in Soil						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	90	88	94	100

PCBs in Soil						
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	19/07/2022	19/07/2022	20/07/2022	20/07/2022	20/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	93	99	103	98

PCBs in Soil						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-72
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH125
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	96	85	113	111

PCBs in Soil						
Our Reference		300620-75	300620-78	300620-81	300620-84	300620-87
Your Reference	UNITS	BH126	BH127	BH128	BH129	BH130
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		13/07/2022	13/07/2022	13/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	21/07/2022	21/07/2022	21/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	112	100	97	91

PCBs in Soil						
Our Reference		300620-90	300620-92	300620-95	300620-98	300620-101
Your Reference	UNITS	BH131	BH132	BH133	BH134	BH135
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	75	73	71	73

PCBs in Soil			
Our Reference		300620-104	300620-107
Your Reference	UNITS	BH136	BH137
Depth		0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022
Type of sample		Soil	Soil
Date extracted	-	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	73	74

DOD: in Call

Acid Extractable metals in soil						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	<1	1	1	1
Copper	mg/kg	<1	<1	<1	<1	<1
Lead	mg/kg	3	3	3	4	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	2	2	3	5	5

Acid Extractable metals in soil						
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	<1	<1	1	<1
Copper	mg/kg	2	<1	1	1	<1
Lead	mg/kg	5	3	6	7	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	5	3	3	7	2

Acid Extractable metals in soil						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	1	1	2	3
Copper	mg/kg	<1	<1	<1	<1	3
Lead	mg/kg	4	4	4	4	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	2
Zinc	mg/kg	2	7	3	4	13

Acid Extractable metals in soil						
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	<1	2	<1	1
Copper	mg/kg	<1	<1	<1	<1	<1
Lead	mg/kg	4	4	5	3	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	4	2	5	3	2

Acid Extractable metals in soil						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-71
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH124
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0.5 - 0.7
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	1	1	1	4
Copper	mg/kg	<1	<1	1	<1	<1
Lead	mg/kg	4	5	8	5	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	2
Zinc	mg/kg	3	3	6	4	2

Acid Extractable metals in soil						
Our Reference		300620-72	300620-75	300620-78	300620-81	300620-83
Your Reference	UNITS	BH125	BH126	BH127	BH128	BH128
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		13/07/2022	13/07/2022	13/07/2022	13/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	2	2	<1	3
Copper	mg/kg	<1	<1	2	<1	<1
Lead	mg/kg	5	4	4	2	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	1	<1	1
Zinc	mg/kg	2	6	10	1	3

Acid Extractable metals in soil						
Our Reference		300620-84	300620-87	300620-90	300620-92	300620-94
Your Reference	UNITS	BH129	BH130	BH131	BH132	BH132
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	6	4	5	14
Copper	mg/kg	<1	4	3	4	8
Lead	mg/kg	3	5	5	6	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	3	2	3	8
Zinc	mg/kg	2	11	9	9	21

Acid Extractable metals in soil						
Our Reference		300620-95	300620-98	300620-100	300620-101	300620-104
Your Reference	UNITS	BH133	BH134	BH134	BH135	BH136
Depth		0 - 0.1	0 - 0.1	0.3 - 0.5	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	3	4	1	1
Copper	mg/kg	3	2	<1	<1	<1
Lead	mg/kg	6	4	3	3	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	2	<1	<1
Zinc	mg/kg	14	11	6	2	5

Acid Extractable metals in soil			
Our Reference		300620-107	300620-109
Your Reference	UNITS	BH137	BH137
Depth		0 - 0.1	0.4 - 0.6
Date Sampled		13/07/2022	13/07/2022
Type of sample		Soil	Soil
Date prepared	-	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	1	4
Copper	mg/kg	<1	<1
Lead	mg/kg	5	3
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	<1	2
Zinc	mg/kg	3	2

Moisture						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Moisture	%	16	17	16	14	15
Moisture						
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Moisture	%	14	16	14	15	17
Moisture						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared						0011
	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	18/07/2022 19/07/2022	18/07/2022 19/07/2022		18/07/2022 19/07/2022	
Date analysed Moisture	- - %			18/07/2022		18/07/2022
	- - %	19/07/2022	19/07/2022	18/07/2022 19/07/2022	19/07/2022	18/07/2022 19/07/2022
Moisture	%	19/07/2022	19/07/2022	18/07/2022 19/07/2022	19/07/2022	18/07/2022 19/07/2022
Moisture	- - %	19/07/2022 14	19/07/2022 13	18/07/2022 19/07/2022 12	19/07/2022 19	18/07/2022 19/07/2022 19
Moisture Moisture Our Reference		19/07/2022 14 300620-45	19/07/2022 13 300620-48	18/07/2022 19/07/2022 12 300620-51	19/07/2022 19 300620-54	18/07/2022 19/07/2022 19 300620-57
Moisture Moisture Our Reference Your Reference		19/07/2022 14 300620-45 BH116	19/07/2022 13 300620-48 BH117	18/07/2022 19/07/2022 12 300620-51 BH118	19/07/2022 19 300620-54 BH119	18/07/2022 19/07/2022 19 300620-57 BH120
Moisture Moisture Our Reference Your Reference Depth		19/07/2022 14 300620-45 BH116 0 - 0.1	19/07/2022 13 300620-48 BH117 0 - 0.1	18/07/2022 19/07/2022 12 300620-51 BH118 0 - 0.1	19/07/2022 19 300620-54 BH119 0 - 0.1	18/07/2022 19/07/2022 19 300620-57 BH120 0 - 0.1
Moisture Moisture Our Reference Your Reference Depth Date Sampled		19/07/2022 14 300620-45 BH116 0 - 0.1 14/07/2022	19/07/2022 13 300620-48 BH117 0 - 0.1 13/07/2022	18/07/2022 19/07/2022 12 300620-51 BH118 0 - 0.1 13/07/2022	19/07/2022 19 300620-54 BH119 0 - 0.1 13/07/2022	18/07/2022 19/07/2022 19 300620-57 BH120 0 - 0.1 13/07/2022
Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample		19/07/2022 14 300620-45 BH116 0 - 0.1 14/07/2022 Soil	19/07/2022 13 300620-48 BH117 0 - 0.1 13/07/2022 Soil	18/07/2022 19/07/2022 12 300620-51 BH118 0 - 0.1 13/07/2022 Soil	19/07/2022 19 300620-54 BH119 0 - 0.1 13/07/2022 Soil	18/07/2022 19/07/2022 19 300620-57 BH120 0 - 0.1 13/07/2022 Soil

Moisture						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-71
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH124
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0.5 - 0.7
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Moisture	%	9.4	12	13	13	8.1
Moisture						
Our Reference		300620-72	300620-75	300620-78	300620-81	300620-83
Your Reference	UNITS	BH125	BH126	BH127	BH128	BH128
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		13/07/2022	13/07/2022	13/07/2022	13/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Moisture	%	12	17	18	14	14
Moisture						
Our Reference		300620-84	300620-87	300620-90	300620-92	300620-94
Your Reference	UNITS	BH129	BH130	BH131	BH132	BH132
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Moisture	%	14	19	13	17	21
Moisture						
Our Reference		300620-95	300620-98	300620-100	300620-101	300620-104
Your Reference	UNITS	BH133	BH134	BH134	BH135	BH136
Depth		0 - 0.1	0 - 0.1	0.3 - 0.5	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022

19/07/2022

30

-

%

19/07/2022

16

19/07/2022

17

19/07/2022

16

Date analysed

Moisture

19/07/2022

18

Moisture						
Our Reference		300620-107	300620-109	300620-110	300620-112	300620-114
Your Reference	UNITS	BH137	BH137	BH138	BH139	BH140
Depth		0 - 0.1	0.4 - 0.6	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		13/07/2022	13/07/2022	15/07/2022	14/07/2022	15/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/07/2022	18/07/2022	18/07/2022	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Moisture	%	15	12	14	16	17

Moisture			
Our Reference		300620-116	300620-118
Your Reference	UNITS	BH141	BH142
Depth		0 - 0.1	0 - 0.1
Date Sampled		15/07/2022	14/07/2022
Type of sample		Soil	Soil
Date prepared	-	18/07/2022	18/07/2022
Date analysed	-	19/07/2022	19/07/2022
Moisture	%	16	18

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-1	300620-4	300620-7	300620-10	300620-13
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH105
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	604.98	649.45	658.05	624.18	555.08
Sample Description	-	Brown clayey soil and rocks	Brown clayey soi and rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	-	-	-
FA and AF Estimation*	g	-	_	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-16	300620-19	300620-22	300620-25	300620-28
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH110
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	12/07/2022	12/07/2022	12/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	610.08	617.02	691.75	616.65	696.87
Sample Description	-	Brown clayey soil and rocks	Brown clayey soi and rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	-	_	-	_	_
FA and AF Estimation*	g	-	-	-	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-31	300620-34	300620-37	300620-40	300620-42
Your Reference	UNITS	BH111	BH112	BH113	BH114	BH115
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	609.78	710.47	562.49	549.42	373.74
Sample Description	-	Brown clayey soil and rocks	Brown clayey soil and rocks	Brown clayey soil and rocks	Brown clayey soil and rocks	Brown clayey soi and rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	<u> </u>	detected No asbestos				
		detected	detected	detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	-	_	-	-	_
FA and AF Estimation*	g	-	_	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-45	300620-48	300620-51	300620-54	300620-57
Your Reference	UNITS	BH116	BH117	BH118	BH119	BH120
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	631.03	608.13	643.7	633.09	524.45
Sample Description	-	Brown clayey soil and rocks	Brown clayey soi and rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos				
T	- //	detected	detected	detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	_	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-60	300620-63	300620-66	300620-69	300620-72
Your Reference	UNITS	BH121	BH122	BH123	BH124	BH125
Depth		0 -0.1	0 - 0.1	0 - 0.1	0 -0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	13/07/2022	13/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	722.88	459.57	832.92	597.1	658.52
Sample Description	-	Brown clayey soil and rocks	Brown clayey soi and rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos				
		detected	detected	detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-75	300620-78	300620-81	300620-84	300620-87
Your Reference	UNITS	BH126	BH127	BH128	BH129	BH130
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		13/07/2022	13/07/2022	13/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	567.46	494.93	707.97	676.79	628.43
Sample Description	-	Brown clayey soil and rocks	Brown clayey soi and rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	-	_	_
FA and AF Estimation*	g	-	-	-	_	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		300620-90	300620-92	300620-95	300620-98	300620-101
Your Reference	UNITS	BH131	BH132	BH133	BH134	BH135
Depth		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	14/07/2022	14/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Sample mass tested	g	640.33	600.59	413.55	539.47	578.12
Sample Description	-	Brown clayey soil and rocks	Brown clayey soil and rocks	Brown clayey soil and rocks	Brown clayey soil and rocks	Brown clayey soi and rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	_	-	_	-
FA and AF Estimation*	g	-	_	-	_	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001			
Our Reference		300620-104	300620-107
Your Reference	UNITS	BH136	BH137
Depth		0 - 0.1	0 - 0.1
Date Sampled		14/07/2022	13/07/2022
Type of sample		Soil	Soil
Date analysed	-	22/07/2022	22/07/2022
Sample mass tested	g	623.74	641.36
Sample Description	-	Brown clayey soil and rocks	Brown clayey soil and rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Trace Analysis	-	detected No asbestos detected	detected No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-
FA and AF Estimation*	g	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Misc Inorg - Soil					
Our Reference		300620-3	300620-22	300620-72	300620-94
Your Reference	UNITS	BH101	BH108	BH125	BH132
Depth		0.35 -0.5	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		12/07/2022	12/07/2022	13/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
pH 1:5 soil:water	pH Units	6.3	5.8	5.9	5.7

CEC					
Our Reference		300620-3	300620-22	300620-72	300620-94
Your Reference	UNITS	BH101	BH108	BH125	BH132
Depth		0.35 -0.5	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		12/07/2022	12/07/2022	13/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Exchangeable Ca	meq/100g	3.4	1.4	3.1	3.6
Exchangeable K	meq/100g	<0.1	<0.1	0.1	0.2
Exchangeable Mg	meq/100g	5.5	0.9	0.9	7.0
Exchangeable Na	meq/100g	0.7	<0.1	<0.1	0.8
Cation Exchange Capacity	meq/100g	9.7	2.4	4.1	12

Clay 50-120g					
Our Reference		300620-3	300620-22	300620-72	300620-94
Your Reference	UNITS	BH101	BH108	BH125	BH132
Depth		0.35 -0.5	0 - 0.1	0 - 0.1	0.3 - 0.5
Date Sampled		12/07/2022	12/07/2022	13/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Date analysed	-	21/07/2022	21/07/2022	21/07/2022	21/07/2022
Clay in soils <2µm	% (w/w)	43	10	8	31

BTEX in Water		
Our Reference		300620-128
Your Reference	UNITS	FR-HA101
Depth		-
Date Sampled		13/07/2022
Type of sample		Water
Date extracted	-	21/07/2022
Date analysed	-	22/07/2022
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	106
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	102

Method ID	Methodology Summary
AS1289.3.6.3	Particle Size Distribution using in house method INORG-107 by way of sieving and/or hydrometer sedimentation testing. Clay fraction at <2µm reported.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004.
	Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" th="" the=""></pql></pql></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-4
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	88	97
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	88	97
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	75	82
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	100	110
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	91	99
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	88	96
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	86	94
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	100	1	115	115	0	102	109

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	300620-66
Date extracted	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	28	<25	<25	0	93	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	28	<25	<25	0	93	90
Benzene	mg/kg	0.2	Org-023	[NT]	28	<0.2	<0.2	0	79	71
Toluene	mg/kg	0.5	Org-023	[NT]	28	<0.5	<0.5	0	106	96
Ethylbenzene	mg/kg	1	Org-023	[NT]	28	<1	<1	0	96	96
m+p-xylene	mg/kg	2	Org-023	[NT]	28	<2	<2	0	93	93
o-Xylene	mg/kg	1	Org-023	[NT]	28	<1	<1	0	91	91
Naphthalene	mg/kg	1	Org-023	[NT]	28	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	28	114	115	1	111	96

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	300620-107
Date extracted	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	63	<25	<25	0	93	91
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	63	<25	<25	0	93	91
Benzene	mg/kg	0.2	Org-023	[NT]	63	<0.2	<0.2	0	75	73
Toluene	mg/kg	0.5	Org-023	[NT]	63	<0.5	<0.5	0	96	95
Ethylbenzene	mg/kg	1	Org-023	[NT]	63	<1	<1	0	99	97
m+p-xylene	mg/kg	2	Org-023	[NT]	63	<2	<2	0	97	96
o-Xylene	mg/kg	1	Org-023	[NT]	63	<1	<1	0	96	94
Naphthalene	mg/kg	1	Org-023	[NT]	63	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	63	122	102	18	98	92

QUALITY CON	TROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	81	19/07/2022	19/07/2022		[NT]	
Date analysed	-			[NT]	81	19/07/2022	19/07/2022		[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	81	<25	<25	0	[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	81	<25	<25	0	[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	81	<0.2	<0.2	0	[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	81	<0.5	<0.5	0	[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	81	<1	<1	0	[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	81	<2	<2	0	[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	81	<1	<1	0	[NT]	
Naphthalene	mg/kg	1	Org-023	[NT]	81	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	81	113	106	6	[NT]	

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	104	19/07/2022	19/07/2022			[NT]
Date analysed	-			[NT]	104	19/07/2022	19/07/2022			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	104	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	104	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	104	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	104	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	104	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	104	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	104	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	104	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	104	96	101	5		[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-4
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	116	105
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	108	116
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	100	72
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	116	105
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	108	116
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	100	72
Surrogate o-Terphenyl	%		Org-020	92	1	94	97	3	97	99

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	300620-66
Date extracted	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	20/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	28	<50	<50	0	121	121
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	28	<100	<100	0	115	114
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	28	<100	<100	0	100	87
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	28	<50	<50	0	121	121
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	28	<100	<100	0	115	114
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	28	<100	<100	0	100	87
Surrogate o-Terphenyl	%		Org-020	[NT]	28	92	94	2	103	103

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	300620-107
Date extracted	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	63	20/07/2022	20/07/2022		19/07/2022	19/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	63	<50	<50	0	105	124
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	63	<100	<100	0	95	120
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	63	<100	<100	0	86	75
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	63	<50	<50	0	105	124
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	63	<100	<100	0	95	120
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	63	<100	<100	0	86	75
Surrogate o-Terphenyl	%		Org-020	[NT]	63	96	98	2	85	105

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	81	19/07/2022	19/07/2022			[NT]
Date analysed	-			[NT]	81	20/07/2022	19/07/2022			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	81	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	81	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	81	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	81	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	81	<100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	81	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	81	94	79	17		[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	104	19/07/2022	19/07/2022			
Date analysed	-			[NT]	104	19/07/2022	19/07/2022			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	104	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	104	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	104	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	104	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	104	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	104	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	104	96	97	1		

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-4
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			21/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	99
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	97
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	103
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	98
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	86
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	89
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	105
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	92	102
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	122	1	88	68	26	71	90

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	300620-66
Date extracted	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	28	19/07/2022	19/07/2022		20/07/2022	20/07/2022
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	120	84
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	115	79
Fluorene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	116	92
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	133	88
Anthracene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	121	94
Pyrene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	125	113
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	103	73
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	28	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	28	<0.05	<0.05	0	130	90
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	28	91	77	17	120	138

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	300620-107
Date extracted	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	63	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	80	76
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	79	75
Fluorene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	82	78
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	88	86
Anthracene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	84	79
Pyrene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	91	85
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	75	69
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	63	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	63	<0.05	<0.05	0	136	112
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	63	112	120	7	86	81

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	81	19/07/2022	19/07/2022			[NT]
Date analysed	-			[NT]	81	21/07/2022	21/07/2022			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	81	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	81	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	81	120	115	4		[NT]

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	104	19/07/2022	19/07/2022			[NT]
Date analysed	-			[NT]	104	20/07/2022	20/07/2022			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	104	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	104	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	104	84	79	6		[NT]

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-4
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			21/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	94
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	85
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	87
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	79	88
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	102
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	98
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	102
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	90
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	90
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	92
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	113	1	92	92	0	92	98

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	300620-66
Date extracted	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	28	19/07/2022	19/07/2022		20/07/2022	20/07/2022
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	110	82
НСВ	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	131	96
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	121	95
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	101	81
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	120	112
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	121	109
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	89	80
Endrin	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	113	84
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	114	110
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	110	102
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	28	90	91	1	114	119

QUALITY CON	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	300620-107
Date extracted	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	63	20/07/2022	20/07/2022		20/07/2022	20/07/2022
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	84	80
НСВ	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	99	92
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	81	77
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	87	81
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	86	80
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	90	84
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	84	80
Endrin	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	82	88
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	86	79
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	96	84
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	63	96	108	12	80	74

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	81	21/07/2022	21/07/2022			[NT]
Date analysed	-			[NT]	81	21/07/2022	21/07/2022			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	81	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	81	100	96	4		[NT]

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	104	20/07/2022	20/07/2022			[NT]
Date analysed	-			[NT]	104	20/07/2022	20/07/2022			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	104	73	71	3		[NT]

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-4
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			21/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	118
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	93
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	117
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	122
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	82
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	91
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	94
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	113	1	92	92	0	92	98

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	300620-66
Date extracted	-				28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-				28	19/07/2022	19/07/2022		20/07/2022	20/07/2022
Dichlorvos	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	114	94
Dimethoate	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	114	97
Fenitrothion	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	128	122
Malathion	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	111	124
Chlorpyriphos	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	124	102
Parathion	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	115	113
Bromophos-ethyl	mg/kg	0.1	Org-022		28	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	115	125
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		28	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	28	90	91	1	114	119

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	300620-107
Date extracted	-				63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-				63	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Dichlorvos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	126	120
Dimethoate	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	85	77
Fenitrothion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	105	95
Malathion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	124	122
Chlorpyriphos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	94	90
Parathion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	74	62
Bromophos-ethyl	mg/kg	0.1	Org-022		63	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	117	108
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		63	96	108	12	80	74

QUALITY CONTRO	L: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				81	19/07/2022	19/07/2022			[NT]
Date analysed	-				81	21/07/2022	21/07/2022			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		81	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		81	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		81	100	96	4		[NT]

QUALITY CONTRO	DL: Organopł	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	104	19/07/2022	19/07/2022			[NT]
Date analysed	-			[NT]	104	20/07/2022	20/07/2022			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	104	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	104	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	104	73	71	3		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-4
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			21/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	124	122
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	113	1	92	92	0	92	98

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	300620-66
Date extracted	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	28	19/07/2022	19/07/2022		20/07/2022	20/07/2022
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	82	70
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	28	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	28	90	91	1	114	119

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	300620-107
Date extracted	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	63	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	126	100
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	63	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	63	96	108	12	80	74

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	81	19/07/2022	19/07/2022			[NT]
Date analysed	-			[NT]	81	21/07/2022	21/07/2022			[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	81	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-021	[NT]	81	100	96	4		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	104	19/07/2022	19/07/2022		[NT]	
Date analysed	-			[NT]	104	20/07/2022	20/07/2022		[NT]	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	104	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	104	73	71	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	300620-4
Date prepared	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			20/07/2022	1	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	84	90
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	87	87
Chromium	mg/kg	1	Metals-020	<1	1	1	<1	0	90	88
Copper	mg/kg	1	Metals-020	<1	1	<1	<1	0	86	90
Lead	mg/kg	1	Metals-020	<1	1	3	3	0	91	90
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	80	82
Nickel	mg/kg	1	Metals-020	<1	1	<1	<1	0	88	89
Zinc	mg/kg	1	Metals-020	<1	1	2	2	0	93	89

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	300620-66
Date prepared	-			[NT]	28	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	28	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Arsenic	mg/kg	4	Metals-020	[NT]	28	<4	<4	0	83	79
Cadmium	mg/kg	0.4	Metals-020	[NT]	28	<0.4	<0.4	0	84	79
Chromium	mg/kg	1	Metals-020	[NT]	28	<1	<1	0	86	80
Copper	mg/kg	1	Metals-020	[NT]	28	<1	<1	0	82	84
Lead	mg/kg	1	Metals-020	[NT]	28	2	3	40	87	82
Mercury	mg/kg	0.1	Metals-021	[NT]	28	<0.1	<0.1	0	92	118
Nickel	mg/kg	1	Metals-020	[NT]	28	<1	<1	0	85	80
Zinc	mg/kg	1	Metals-020	[NT]	28	2	2	0	89	80

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	300620-107
Date prepared	-			[NT]	63	19/07/2022	19/07/2022		19/07/2022	19/07/2022
Date analysed	-			[NT]	63	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Arsenic	mg/kg	4	Metals-020	[NT]	63	<4	<4	0	83	85
Cadmium	mg/kg	0.4	Metals-020	[NT]	63	<0.4	<0.4	0	83	83
Chromium	mg/kg	1	Metals-020	[NT]	63	1	1	0	85	85
Copper	mg/kg	1	Metals-020	[NT]	63	<1	<1	0	82	88
Lead	mg/kg	1	Metals-020	[NT]	63	5	5	0	86	86
Mercury	mg/kg	0.1	Metals-021	[NT]	63	<0.1	<0.1	0	106	97
Nickel	mg/kg	1	Metals-020	[NT]	63	<1	<1	0	84	85
Zinc	mg/kg	1	Metals-020	[NT]	63	3	3	0	89	85

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	81	19/07/2022	19/07/2022			
Date analysed	-			[NT]	81	20/07/2022	20/07/2022			
Arsenic	mg/kg	4	Metals-020	[NT]	81	<4	<4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	81	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	81	<1	<1	0		
Copper	mg/kg	1	Metals-020	[NT]	81	<1	<1	0		
Lead	mg/kg	1	Metals-020	[NT]	81	2	2	0		
Mercury	mg/kg	0.1	Metals-021	[NT]	81	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	81	<1	<1	0		
Zinc	mg/kg	1	Metals-020	[NT]	81	1	2	67	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	104	19/07/2022	19/07/2022			
Date analysed	-			[NT]	104	20/07/2022	20/07/2022			
Arsenic	mg/kg	4	Metals-020	[NT]	104	<4	<4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	104	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	104	1	1	0		
Copper	mg/kg	1	Metals-020	[NT]	104	<1	<1	0		
Lead	mg/kg	1	Metals-020	[NT]	104	7	7	0		
Mercury	mg/kg	0.1	Metals-021	[NT]	104	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	104	<1	<1	0		
Zinc	mg/kg	1	Metals-020	[NT]	104	5	5	0	[NT]	[NT]

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			19/07/2022	[NT]		[NT]	[NT]	19/07/2022	
Date analysed	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CONTROL: CEC						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022	
Date analysed	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	111	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	108	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	105	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	116	

QUALITY CONTROL: BTEX in Water					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			21/07/2022	[NT]		[NT]	[NT]	21/07/2022	
Date analysed	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	93	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	100	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98	
Surrogate Dibromofluoromethane	%		Org-023	99	[NT]		[NT]	[NT]	101	
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	96	[NT]		[NT]	[NT]	101	

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 300620-42,95 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details	
Your reference	E33942PL, Moruya
Envirolab Reference	300620
Date Sample Received	15/07/2022
Date Instructions Received	15/07/2022
Date Results Expected to be Reported	22/07/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	129 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

d

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	CEC	Clay 50-120g	BTEX in Water	On Hold
BH101-0 - 0.1	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark					
BH101-0.1 - 0.3													\checkmark
BH101-0.35 -0.5									✓	✓	✓		
BH102-0 - 0.1	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark					
BH102-0.1 - 0.3													✓
BH102-0.3 - 0.5													✓
BH103-0 - 0.1	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark					
BH103-0.1 - 0.3													\checkmark
BH103-0.4 - 0.6													✓
BH104-0 - 0.1	\checkmark	✓	\checkmark	✓	✓	✓	✓	\checkmark					
BH104-0.1 - 0.3													✓
BH104-0.3 - 0.5													✓
BH105-0 - 0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
BH105-0.1 - 0.3													\checkmark
BH105-0.3 - 0.5													\checkmark
BH106-0 - 0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark					
BH106-0.1 - 0.3													\checkmark
BH106-0.3 - 0.5													\checkmark
BH107-0 - 0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark					
BH107-0.1 - 03													\checkmark
BH107-0.3 - 0.5													\checkmark
BH108-0 - 0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH108-0.1 - 0.3													\checkmark
BH108-0.4 - 0.6													✓
BH109-0 0.1	✓	✓	✓	✓	✓	✓	✓	✓					
BH109-0.1 - 0.3													✓
BH109-0.4 - 0.6													✓
BH110-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	✓					
BH110-0.1 - 0.3													✓
BH110-0.3 - 0.5													✓
BH111-0 - 0.1	\checkmark	✓	✓	✓	✓	✓	✓	✓					
BH111-0.1 - 0.3													\checkmark

Envirolab Se	rvices Pty Ltd
	7 110 505 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	CEC	Clay 50-120g	BTEX in Water	On Hold
BH111-0.3 - 0.5													\checkmark
BH112-0 - 0.1	1	✓	✓	\checkmark	\checkmark	✓	1	\checkmark					
BH112-0.1 - 0.3													\checkmark
BH112-0.4 - 0.6													\checkmark
BH113-0 - 0.1	✓	✓	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark					
BH113-0.1 - 0.3													✓
BH113-0.3 - 0.5													✓
BH114-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	✓					
BH114-0.1 - 0.3													✓
BH115-0 - 0.1	✓	✓	✓	✓	\checkmark	✓	✓	✓					
BH115-0.1 - 0.3													✓
BH115-0.3 - 0.5													✓
BH116-0 - 0.1	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark					
BH116-0.1 - 0.3													✓
BH116-0.3 - 0.5													✓
BH117-0 - 0.1	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark					
BH117-0.1 - 0.3													✓
BH117-0.3 - 0.5													✓
BH118-0 - 0.1	✓	✓	✓	✓	\checkmark	✓	✓	✓					
BH118-0.1 - 0.3													✓
BH118-0.6 - 0.8													✓
BH119-0 - 0.1	1	✓	✓	✓	\checkmark	✓	✓	✓					
BH119-0.1 - 0.3													✓
BH119-0.4 - 0.6													✓
BH120-0 - 0.1	1	✓	✓	✓	✓	✓	✓	✓					
BH120-0.1 - 0.3													✓
BH120-0.3 - 0.5													✓
BH121-0 -0.1	1	✓	✓	✓	✓	✓	✓	✓					
BH121-0.1 - 0.3													✓
BH121-0.4 - 0.6													✓
BH122-0 - 0.1	✓	\checkmark	\checkmark	✓	✓	✓	✓	\checkmark					
BH122-0.1 - 0.3													✓

Envirolab Services Pty Ltd
ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	CEC	Clay 50-120g	BTEX in Water	On Hold
BH122-0.6 - 0.8													✓
BH123-0 - 0.1	✓	✓	✓	✓	\checkmark	\checkmark	✓	\checkmark					
BH123-0.1 - 0.3													✓
BH123-0.4 - 0.6													✓
BH124-0 -0.1	✓	✓	✓	✓	✓	\checkmark	✓	✓					
BH124-0.1 - 0.3													✓
BH124-0.5 - 0.7	\checkmark	✓	✓				✓						
BH125-0 - 0.1	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark	✓		
BH125-0.1 - 0.3													✓
BH125-0.5 - 0.7													✓
BH126-0 - 0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	1	\checkmark					
BH126-0.1 - 0.3													\checkmark
BH126-0.4 - 0.6													\checkmark
BH127-0 - 0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark					
BH127-0.1 - 0.3													✓
BH127-0.4 - 0.6													\checkmark
BH128-0 - 0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark					
BH128-0.1 - 0.3													✓
BH128-0.3 - 0.5	\checkmark	✓	\checkmark				✓						
BH129-0 - 0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark					
BH129-0.1 - 0.3													✓
BH129-0.3 - 0.5													✓
BH130-0 - 0.1	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	✓	✓					
BH130-0.1 - 0.3													✓
BH130-0.4 - 0.6													✓
BH131-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	✓					
BH131-0.1-0.3													✓
BH132-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	✓					
BH132-0.1 - 0.3													✓
BH132-0.3 - 0.5	✓	✓	✓				✓		✓	✓	✓		
BH133-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	✓					
BH133-0.1 - 0.2													✓

Envirolab Services Pty Ltd
ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	CEC	Clay 50-120g	BTEX in Water	On Hold
BH133-0.2 - 0.4													\checkmark
BH134-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	\checkmark					
BH134-0.1 - 0.3													\checkmark
BH134-0.3 - 0.5	✓	✓	✓				✓						
BH135-0 - 0.1	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark					
BH135-0.1 - 0.3													\checkmark
BH135-0.3 - 0.5													✓
BH136-0 - 0.1	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark					
BH136-0.1 - 0.3													\checkmark
BH136-0.3 - 0.5													✓
BH137-0 - 0.1	✓	✓	✓	✓	✓	✓	✓	\checkmark					
BH137-0.1 - 0.3													✓
BH137-0.4 - 0.6	\checkmark	\checkmark	\checkmark				✓						
BH138-0 - 0.1	\checkmark	\checkmark											
BH138-0.3 - 0.5													\checkmark
BH139-0 - 0.1	\checkmark	\checkmark											
BH139-0.3 - 0.5													✓
BH140-0 - 0.1	\checkmark	\checkmark											
BH140-0.25 - 0.45													✓
BH141-0 - 0.1	\checkmark	✓											
BH141-0.4 - 0.6													✓
BH142-0 - 0.1	\checkmark	✓											
BH142-0.2 - 0.6													✓
SDUP103													✓
SDUP104													✓
SDUP105													✓
SDUP106													✓
SDUP107													✓
SDUP108													✓
TBS101	✓												
TBS102													✓
FR-HA101												✓	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	Misc Inorg - Soil	CEC	Clay 50-120g	BTEX in Water	On Hold
TS101	\checkmark												
TS102													\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

			S/	<u>ample i</u>	<u>AND (</u>	CHAIN OF	<u>cus</u>	STOL	<u> Y F</u>	ORN	<u>/I</u>				_	_			
): IVIROLAB SI		F PTY LTD		JKE Job		E33942PL]				FROM		k						
ASHLEY ST		067		Number:								J	KE	nvi	ro	nm	ien	ts	
IATSWOOD (02) 991062		067		Date Resu	lts	STANDARD	- 7				REAR (OF 11	5 WIC	KS RO	AD			1	
(02) 991062				Required:							MACQ	UARI	E PAR						
,											P: 02-9	-			F: 02-9				
tention: Ail	een			Page:		1 of 6					Attent			ike <u>nvi</u> i	a <mark>rry L</mark> e ronme				
				l						Sam	ple Pre		~ ~ ~				•		
cation:	Moruy							-			Te	sts Re	equire	d					
mpler:	EW & A	<u></u>		<u>г — т</u>				1 0	- 1			%		- [
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos (500mL)	Combo 3	Н	CEC	Clay content %	TRH/BTEX	втех					
2/07/2022	ľ	BH101	0 - 0.1	G, A	0	F: Silty Sandy Clay	х	x										Ì	
2/07/2022	2:	вн101	0.1 - 0.3	G, A	0.2	F: Silty Sandy Clay				<u> </u>								└──┨	
2/07/2022	3	вн101	0.35 -0.5	G, A	0	Silty Sandy Clay			X	x	х	_X	<u> </u>						
2/07/2022	4	вн102	0 - 0.1	G, A	0	F: Silty Sandy Clay	x	x											
2/07/2022	5	BH102	0.1 - 0.3	G, A	0	F: Silty Sandy Clay								_					virolab Services
2/07/2022	6	BH102	0.3 - 0.5	G, A	0	Silty Sandy Clay		_							_ <u>.cr</u>	พี่เอา			12 Ashley St
2/07/2022	7.	вн103	0-0.1	G, A	0	<u>Clav</u> F: Silty Sandy Clav	х	x			<u> </u>		<u> </u>		<u> </u>	b N		Chai P	swood NSW 2067 h: (02) 9910 6200
2/07/2022	8.	вн103	0.1 - 0.3	G, A	0	F: Silty Sandy Clay							ļ		1		<u>.</u>		300670
2/07/2022	9.	BH103	0.4 - 0.6	G, A	0	Silty Sandy Clay											leceiv Receiv		15 720 15 720
12/07/2022	10	BH104	0-0.1	G, A	0	F: Silty Sandy Clay	X	x							B	cei	d ba	-	ଜ
	+ • -	BH104	0.1 - 0.3	G, A	0	F: Silty		1 -							Ĩ	emp(6	Ambi	5
12/07/2022	11	BH104	0.3 - 0.5	G, A	0	Sandy Clay Silty Sandy	<u>+</u>	1 -							6	Secur	g: ice	act/B	oken/None
12/07/2022	_ <u></u>		0-0.1	 G, A		<u> </u>	x	x	-	1							-		
12/07/2022	+	BH105			0	<u>Sandy Clay</u> F: Silty	+			+		-	-			1-		T	
12/07/2022	<u> y</u>	BH105	0.1 - 0.3		┣────	Sandy Clay Silty Sandy		┼━╌	+	╁━─	+		+	+-	1-	+-	+		1
12/07/2022	<u> </u>	BH105	0.3 - 0.5		<u> </u>	<u> </u>	<u> </u>		┼──	┼─	+	┢	╋	+-	+		+		1
12/07/2022	16	BH106	0-0.1	G, A	°	Sandy Clay F; Silty	×	_ <u></u> ×	+	+-					+		+		1
12/07/2022	A	вн106	0.1 - 0.3	G, A	0	Sandy Clay Silty Sandy		+		+							+	+	4
12/07/2022	18	BH106	0.3 - 0.5	G, A	0	Clav				-						-			-
12/07/2022	11	BH107	0-0.1	, G, A	0	F: Silty Sandy Clay	×	×		+			_ _	_ _					{
12/07/2022	2 20	BH107	0.1 - 03	G, A	0	F: Silty Sandy Clay			<u> .</u>			+					_ -		4
12/07/2022	2 21	BH107	0.3 - 0.5	G, A	0	Silty Sandy Clay F: Silty			<u> </u>		_ _								4
12/07/202	2 22	BH108	0 - 0.1		0	Sandy Clav	<u> </u>	: X	-	<u>'</u>	(X				+	+		+	4
12/07/202	2 23	BH108	0.1 - 0.3	3 G, A	0	F: Silty Sandy Clay	<u>_</u>				_		_ -					_ <u> </u>	-
12/07/202	2 21	6 BH108	0.4 - 0.6	5 G, A	× 0	Silty Sandy Clay													4
Remarks (o	comme	nts/detectio	n limits requi	red):			G - A -	mple (250m Ziplo Plasti	g Gla :k Ask	ss Jar Desto:								<u> </u>	
Relinquish	ed By: I	HL		Date: 1	.5/07/20			ne:		_	Red	ceive	d By:			Da	ite:		
	`							16	45	-		PL	ey.				12	1/20	<u>_</u> 122
I								_		_		_	75						

, j

.

<u>):</u>			<u></u>			CHAIN OF	<u></u>		<u></u>	0111	FROM	1:					_	
VIROLAB SE		S PTY LTD		IKE Job		E33942PL	 						$\langle \langle$					
ASHLEY ST	REET			Number:								.1	ĸĒ	nv	iro	nm	en	ts
HATSWOOD	NSW 2	067					1					OF 11	•					
(02) 991062	00			Date Resu		STANDARD						0F 11 2UARI				12		1
(02) 991062	01			Required:								9888 !				9888 5	5001	
				Page:		2 of 6	••••					tion:	-		v	eonar		
ttention: All	een			rage.		2010						hleon	ard@			ents.co		
ocation:	Moruy	_							-	Sam	ple Pr	eserve	ed in E	isky o	n ice			
	EW & /										To	ests Re	equire	d				
ampler:	EVICE	<u></u>	<u> </u>					S				%	٢					
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos (500mL)	Combo 3	Hd	CEC	Clay content %	ткн/втех	BTEX				
2/07/2022	25	BH109	0 0.1	G, A	0	F: Silty Sandy Clay	X	x		<u> </u>	-							
2/07/2022	76	вн109	0.1 - 0.3	G, A	0	F: Silty Sandy Clay		-			 							<u> </u>
2/07/2022	27	BH109	0.4 - 0.6	G, A	0	Silty Sandy Clay F: Silty					┨	┣						
2/07/2022	28	BH110	0 - 0.1	G, A	0	F: Slity Sandy Clav F: Slity	X	×		┣	┦					┦━─		$\left - \right $
2/07/2022	29	BH110	0.1 - 0.3	G, A	0	Sandy Clay										┢─	 _	<u> </u>
2/07/2022	30	BH110	0.3 - 0.5	G, A	0	Silty Sandy Clav F: Silty		<u> </u>						_−	-			┣──
2/07/2022	31	BH111	0-0.1	G, A	0	Sandy Clay	X	×	-									╂───
2/07/2022	32	BH111	0.1 - 0.3	G, A	0	F: Silty Sandy Clay		<u> </u>	_	-								┼─-
12/07/2022	33	вн111	0.3 - 0.5	G, A	0	Silty Sandy Clay F: Silty		<u> </u>		<u> </u>			<u> </u>					┨───
12/07/2022	34	BH112	0-0.1	G, A	0	Sandy Clay	X	×	+	<u> </u>					┼	+	+	+
12/07/2022	35	BH112	0.1 - 0.3	G, A	0	F: Silty Sandy Clay	<u> </u>			-							+	┨──
12/07/2022	36	BH112	0.4 - 0.6	G, A	:0	Silty Sandy Clav F: Silty												
14/07/2022	37	BH113	0 - 0.1	G, A	0	Sandy Clay F: Silty	<u>×</u>	X	-			+			+		+	┼─
14/07/2022	38	BH113	0.1 - 0.3	G, A	0	Sandy Clav Silty Sandy			_	+	+				+			+
14/07/2022	39	BH113	0.3 - 0.5	G, A	0	<u>Clav</u> F: Slity				_	+		+	+				+
14/07/2022	40	8H114	0-0.1	G, A	0	Sandy Clay	×	×						+-				+
14/07/2022	4	BH114	0.1 - 0.3	G, A	0	<u>Sandy Clav</u> F: Silty			+	+-	_							+
14/07/2022	42	BH115	0 - 0.1	G, A	0	Sandy Clay F: Silty	<u>×</u>	<u> </u>	╋	+-	+-	+		+	+	+	+	+
14/07/2022			0.1 - 0.3	G, A	<u> </u>	Sandy Clay Silty Sandy	+	+	+	+	+	+	+	╉	+	+	+	+
14/07/2022	4.4	ВН115	0.3 - 0.5	G, A	0	<u> </u>					_							
14/07/2022	45	BH116	0-0.1	G, A	0	Sandy Clay	<u> </u>	- <u>×</u>					-{					-{
14/07/2022	4)	9 BH116	0.1 - 0.3		0	Sandy Clay Silty Sandy	-	+	╋	_+-	_	+		╀	+	+	+	+
14/07/2022		вн116	0.3 - 0.5		0	Clav												
Remarks (c	ommei	nts/detection	n limits requir	ed):		/ź	G ·	mple C 250m Ziploo Plasti	g Gla :k As	ss Jar besto	s Bag							
Relinquish	d Bur l			Date: 1	5/07/20	022		ne:			Re	ceiver	_			Da	te:	
Reinquisn	a oy. 1							16	ふく	-		7	ro	4			15	7/7
L										<u> </u>			Ť	;			. <u> </u>	

0 300600

.

•

<u> </u>			<u></u>	MPLE	AND_	<u>CHAIN OF</u>	CUS	τοι	<u>DY F</u>	OR	FROM	. 1	i:				_	7
<u>O:</u> NVIROLAB SI 2 ASHLEY STI	REET			IKE Job Number:		E33942PL _							KE	nv	iro	nm	ıer	nts
HATSWOOD : (02) 991062 : (02) 991062	200	067		Date Resu Required:	lts	STANDARD	· -]						E PAF	RK, NS	DAD W 211 F: 02-		5001	
ttention: Ail	een			Page:		3 of 6	• *					tion: hleon		-	arry L ronme			<u>i</u>
ocation:	Moruy	a								Sam	ple Pr		_		n Ice			
ampler:	EW & 7	A <u>M</u>		r						<u> </u>	т —	ests R	equire	ed I				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos (500mL)	Comba 3	Hd	CEC	Clay content %	ткн/втех	BTEX				
13/07/2022	48	BH117	0 - 0.1	G, A	0	F: Silty Sandy Clay	х	х		<u> </u>	-			<u> </u>				
.3/07/2022	49	BH117	0.1 - 0.3	G, A	0	F: Silty Sandy Clay			<u> </u>	<u> </u>				┢		<u> </u>		
13/07/2022	50	BH117	0.3 - 0.5	G, A	0	Silty Sandy Clay		<u> </u>				 	 	┣				
13/07/2022	51	BH118	0 - 0.1	G, A	0	F: Silty Sandy Clay	X	×	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	 			
13/07/2022	52	BH118	0.1 - 0.3	G, A	0	F: Siity Sandy Clay Silty Sandy			Ĺ	<u> </u>		<u> </u>	<u> </u>	<u> </u>				
13/07/2022	ß	BH118	0.6 - 0.8	G, A	0	Silty Sandy Clay F: Silty	Ļ		<u> </u>	<u> </u>			<u> </u>					+ -
13/07/2022	54	BH119	0-0.1	G, A	0	Sandy Clay	х	×			<u> </u>	<u> </u>	 	┦—	<u> </u>			
13/07/2022	55	BH119	0.1 - 0.3	G, A	0	F: Silty Sandy Clav Silty Sandy							<u> </u>	4—	1-			
13/07/2022	56	вн119	0.4 - 0.6	G, A	0	Clay			<u> </u>			<u> </u>	-	<u> </u>		_	-	<u> </u>
13/07/2022	SY	BH120	0 - 0.1	G, A	0	F: Silty Sandy Clay	х	×				┦				+		
13/07/2022	58	BH120	0.1 - 0.3	G, A	0	F: Silty Sandy Clay				4_	<u> </u>	-	-					
13/07/2022	59	BH120	0.3 - 0.5	G, A	0	Silty Sandy Clay				_	_			_				
14/07/2022	60	BH121	0 -0.1	G, A	0	F: Silty Sandy Clay	×	×	-					_ _				
14/07/2022	61	BH121	0.1 - 0.3	G, A	0	F: Slity Sandy Clay			-	+		_				_	_	
14/07/2022	62	BH121	0.4 - 0.6	G, A	0	Silty Sandy Clav F: Silty				_	_	_						
14/07/2022	63	BH122	0 - 0.1	G, A	0	Sandy Clay	X	×			_ _					_		+
14/07/2022	64	BH122	0.1 - 0.3	G, A	0	F: Silty Sandy Clav Silty Sandy	 				_					╉	+	+ -
14/07/2022	65	BH122	0.6 - 0.8	G, A	0	Clav F: Silty	-		- -	_ _						-	. 	
14/07/2022	66	BH123	0 - 0.1	G, A	0	Sandy Clav F: Silty	×	×				_		+	+	+	+	
14/07/2022	67	BH123	0.1 - 0.3	G, A	0	Sandy Clay Silty Sandy	+	+	+	+		+	╉			┿	╋	+
14/07/2022			0.4 - 0.6	G, A	0	Clav F: Silty	┿	+-	+	+	_	+-		+-		┼	+	+
13/07/2022	l f	вн124	0 -0.1	G, A	0	Sandy Clay F: Silty	×	<u> </u>	-	+		+-	╀		+-	╋	+-	+
13/07/2022	70	BH124	0.1 - 0.3	G, A	<u>0</u>	Sandy Clay Silty Sandy	+			+	+	-	+-	+	+	+	╋	-
13/07/2022		вн124	0.5 - 0.7		0	Clav				iners:			1					
Remarks (o	omme	nts/detection	n limits requir	ed):			G - A - P -	250m Ziplo Plasti	ng Gla ck As	iss Jar besto:	s Bag					0.		
Relinquish	ed By: I	HL		Date: 1	5/07/20	022		ne: 64	15	-	Re						ite: 5(7	pro

300620

•

			<u> </u>	AIVIPLE	AND	CHAIN OF	<u>LO3</u>	TOL	1 1			. 1						
<u>):</u> NVIROLAB SEI	RVICES	PTY LTD		JKE Job		E33942PL				ľ	1000		K					•
SASHLEY STR				Number:						1		J	ΚĒ	nvi	irc	nn	ne	nts
HATSWOOD)67			14-	CTANDADD -	-1				REAR	DE 11	5 W/C	KS RC	DAD			
(02) 9910620			1	Date Resu		STANDARD]			I	MACO	-				13		
(02) 9910620)1			Required:						I	P: 02-9	-		•		2-9888	5001	
ttention: Aile	en			Page:		4 of 6					Atten	ion: [Ĩн	arry	Leona	rd	·
						·	_			Samı	ole Pre					nents.	<u>:0m.a</u>	
	Moruya						<u>`</u>				Te	sts Re	quire	d				_
ampler: E	<u>A & WE</u>	. <u>M</u>				┎━──┦			- 1	<u> </u>	1	8	_			1		
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos (500mL)	Combo 3	Hd	CEC	Clay content %	ткн/втех	BTEX				
3/07/ 2 022	72	BH125	0 - 0.1	G, A	0	F: Silty Sandy Clav F: Silty	x	x	_	х	x	x						
3/07/2022	73	BH125	0.1 - 0.3	G, A	0	Sandy Clay Slity Sandy									-		┼╌	+
.3/07/2022	74	BH125	0.5 - 0.7	G, A	0	<u>Clay</u> F: Silty								┣──	┝	-	-	
.3/07/2022	5	BH126	0-0.1	G, A	0	Sandy Clav F: Silty	<u>x</u>	×			'				-	+	┢	
	-110	BH126	0.1 - 0.3	G, A	0	Sandy Clay Silty Sandy				<u> </u>					+		+	+
13/07/2022		BH126	0.4 - 0.6	G, A	0	Clav F: Silty	x	x							-			-
13/07/2022	18	BH127	0-0.1	G, A G, A	0	Sandy Clav F: Silty					 				1			
13/07/2022	79	BH127 BH127	0.1-0.5	G, A	0	Sandy Clay Silty Sandy												
13/07/2022 13/07/2022	80 81	BH128	0-0.1	G, A	0	<u>Clav</u> F: Silty Sandy Clav	x	×										
13/07/2022	<u>81</u>	BH128	0.1 - 0.3	G, A	0	F: Silty Sandy Clay					_							
14/07/2022	1	BH128	0.3 - 0.5	G, A	0	Silty Sandy Clay			×				<u> </u>	_		_ _		
14/07/2022	84	BH129	0-0.1	G, A	0	F: Silty Sandy Clay	×	×				-			_			
14/07/2022	85	BH129	0.1 - 0.3	G, A	0	F: Silty Sandy Clay Silty Sandy							-	┢	╞		+	
14/07/2022	86	BH129	0.3 - 0.5	G, A	0	Clav F: Slity	+	<u> </u>	+	+	+		+		╉			
14/07/2022	87	вн130	0-0.1	G, A	0	Sandy Clay F: Silty	X .	×		+-				-{	┽	_ -	- -	
14/07/2022	88	BH130	0.1 - 0.3	G, A		Sandy Clay Silty Sandy	+							┢	┢	_	╈	
14/07/2022	89		0.4 - 0.6	G, A G, A	0	Clav F: Silty	$\frac{1}{x}$	×	╉╼	+-			+-		- -	-+-	- -	- -
14/07/2022	40	BH131 BH131	0.1-0.3	G, A		Sandy Clay F: Silty		+	1-	+-	+	+		\uparrow	╈			
14/07/2022	+ ''	BH131 BH132	0.1-0.5	G, A	0	Sandy Clay F: Silty Sandy Clay	X	×	1	1	1							
14/07/2022	1.5	BH132	0.1 - 0.3		0	F: Silty	1.											_ _
14/07/2022		8H132	0.3 - 0.5	G, A	0	Sandy Clay Silty Sandy Clay F: Silty			X	×	x	×		_	+			_
14/07/2022		BH133	0 - 0.1	G, A	Ó	Sandy Clay	<u>ر ×</u>	X	_	<u> </u>				_ _		_	_	
14/07/2022		BH133	0.1 - 0.2		0	F: Silty Sandy Clay	4_											
Remarks (co	ommer	nts/detection	n limits requi	red):			G - A -	nple C 250m Ziploc Plasti	g Glas k Asb	ss Jar Destos	Bag							
				Data	15/07/2	022	_	ne:			Re	celve	i By:			D	ate:	
Relinquishe	1.0																	

<u>D:</u> NVIROLAB SI 2 ASHLEY STI HATSWOOD	REET		L L	KE Job Jumber:		E33942PL					FROM		KE	nvi	iroi	h	en	ts
: (02) 991062 : (02) 991062	200		l l	Date Resu Required:	,	STANDARD]				MACO	OF 11 QUARI 9888 !	E PAR	K, NS	W 211 F: 02-9	888 5		
ttention: Ail	een			age:		5 of 6						tion: hleon			arry Le ronme			
ocation:	Moruya	- <u></u>								Sam	ple Pr	eserve	ed in E	sky oi	n Ice			
ampler:	EW & A										т. —	ests Re	equire	d				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos {500mL}	Combo 3	Hd	CEC	Clay content %	ткн/втех	втёх				
4/07/2022	97	BH133	0.2 - 0.4	G, A	0	Silty Sandy Clay												
4/07/2022	98	вн134	0 - 0.1	G, A	0	F: Silty Sandy Clay	Х	X				<u> </u>	<u> </u>				<u> </u>	
4/07 /2 022	99	BH134	0.1 - 0.3	G, A	0	F: Silty Sandy Clay Silty Sandy					<u> </u>	 	<u> </u>					
4/07/2022	100	BH134	0.3 - 0.5	G, A	0	Silty Sandy <u>Clav</u> F: Silty			X		╄	<u> </u>	ľ				;	
4/07/2022	101	BH135	0 - 0.1	G, A	0	Sandy Clay	x	×			╂							
4/07/2022	102	BH135	0.1 - 0.3	G, A	0	F: Silty Sandy Clay						┨				-		$\left - \right $
14/07/ 20 22	03	BH135	0.3 - 0.5	G, A	0	Silty Sandy Clay F: Silty		<u> </u>	-			┦—	┦—				-	
14/07/2022	101	BH136	0-0.1	:G, A	0	Sandy Clay	X	×		<u> </u>		-	<u> </u>	·				
13/07/2022	105	BH136	0.1 - 0.3	G, A	0	F: Silty Sandy Clay Silty Sandy		<u> </u>			+-	╂	-		╄		-	┼─┨
13/07/2022	106	BH136	0.3 - 0.5	G, A	0	Clay				<u> </u>		╉╌─		╄ -		┝	ļ	┝╌┨
13/07/2022	107	BH137	0 - 0.1	G, A	0	F: Silty Sandy Clay	X	×	ļ				<u> </u>	<u> </u> .			<u> </u>	┼╌┨
13/07/2022	108	BH137	0.1 - 0.3	G, A	0	F: Silty Sandy Clay				<u> </u>	+		-	╄		 	╂	┾╌┨
13/07/2022	100	вн137	0.4 - 0.6	G, A	0	Silty Sandy	<u> </u>		X							–		┼─┨
15/07/2022	110	BH138	0-0.1	G	0.	F: Silty Sandy Clay							· x		+ -	-		┥┩
15/07/2022	11	BH138	0.3 - 0.5	G	0	Silty Sandy Clay	_			_		_					-	┼─┨
14/07/2022	112	BH139	0 - 0.1	G	0	F: Silty Sandy Clay	_	-				+-	- ×	+-	+	╞	+	┼─┤
14/07/2022	113	BH139	0.3 - 0.5	G	0	Clay F: Silty							+-		+	+	+	┿┦
15/07/2022	114	BH140	0-0.1	G	0	Sandy Clay Silty Sandy	_	\vdash	-			_{	×		+	+	+	$\left - \right $
15/07/2022	115	BH140	0.25 - 0.45	G	0	Clay F: Silty	╞		+	+	+	+	+	-		-		
15/07/2022	116	BH141	- 0-0.1	G	0	Sandy Clay Silty Sandy	╄-						×	+	+	┢	+	+
15/07/2022	117	BH141	0.4 - 0.6	G	0	Clav F: Silty	\downarrow	+	┢	+	+-	+	+	+	+	+	+	
14/07/2022			0 - 0.1	.[g	0	Sandy Clay		+		-	<u>_</u>		X	+			+	
14/07/2022	110	BH142	0.2 - 0.6	G	0	Silty Sandy Clay F: Silty	╞	+	-			_ _	_ _	-				+
	-	SDUP101	* I	G	<u> </u>	F: Silty Sandy Clay F: Silty											+-	+
-	-	SDUP102		G	<u> </u>	Sandy Clay	>	·										<u> </u>
SDUP101 -	Inter-la	nts/detection boratory du boratory du	n limits require plicate plicate				G - A - P -	mple C 250m Ziploo Plasti	g Glas :k Asb	ss Jar Jestos	; Bag					Da		
Relinquish	Relinquished By: HL				15/07/20	122	Tir	ne: IG	45		Ke	ceive:	1 BY: 7/1		n_			1712

- .ĥ.

• •

			5	AMPLE	AND	CHAIN OF	<u>cu</u> :	510	וזע	-ORI	FROM	. î						
<u>D:</u> NVIROLAB SI	FRVICE	מדו אדס		JKE Job		E33942PL					<u></u>	له "		•				
2 ASHLEY ST		JF11 LIU		Number:			قير.							·		-	00	-
HATSWOOD		067												nvi		1111	en	LS
; (02) 991062				Date Resi	lts	STANDARD					REAR							
(02) 991062				Required							MACO	QUAR	IE PAF	RK, NS				
				1		r=					P: 02- Atten	9888	5000		F: 02-9 arry Le			
ttention: Ail	een			Page:		6 of 6					Atten	tion: bleon	ard@	ikenvi	ronme	ents.co	a om.au	1
				<u> </u>					_	Sam	i ple Pr	_		_				[
ocation:	Moruy	a								341			equire					
ampler:	EW & /	AM				,		<u> </u>	r		<u> </u>		- quire		· · · ·			
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	סופ	Sample Description	Combo 6	WA Asbestos	Combo 3	Hđ	CEC	Clay content %	ткн/втех	BTEX			-	
4/07/2022	120	SDUP103	-	G		F: Silty Sandy Clav				<u> </u>	<u> </u>					_		
4/07/2022	(21	SDUP104		G		F: Silty Sandy Clay F: Silty		-	╄									
4/07/2022	122	SDUP105		G		Sandy Clay F: Silty					┼—				 '			
14/07/2022	123	SDUP106		G		Sandy Clay F: Silty	<u> </u>	+	+	+		-	┞—					
4/07/2022	124	SDUP107		G		Sandy Clay F: Silty	<u> </u>	+										
14/07/2022		SDUP108		G		Sandy Clav F: Silty	×		+			┨───	-		┼──			
14/07/2022		SDUP109		G		Sandy Clav F: Silty	×			+	+		+	╉──	\vdash			
13/07/2022	125	SDUP110	· -	G		Sandy Clav		_					+	x				
13/07/2022	176	TB\$101		G		+		-		_ _				+		-		
13/07/2022	122		·	G			+ -				+-	+-	<u> </u>	+	+-			
13/07/2022	128		<u> </u>	G										- <u>-</u> x		{	+	
13/07/2022	+	TS101	<u> </u>	G			-						+	+	+	+	+ -	
15/07/2022	135	TS102	<u> </u>	G			┼─	╞		+			+ -		+			
							╈	+								+		-
			4				+	+	┢		+	+	+		+	┢		
	+-		+	_	+-						+-		┢	╞	+		1	
					+ -		┢		┢			+	+-	1-	1	1-	-	
	+						╉	+	╈		+	+	+	\uparrow	1.	1		
						+	+-		- -	+	-	- -	- -			:		
						_ <u> </u>	+	╉	╧						T			
┣━───	+		+	_	+ -		+		+			╈	T					
├				-+	+	_	┢	╈	╉	+	\uparrow							
			+		1			- -	- -	-1-								
			_					-+-	- -	- -								
SDUP108 -	Intra-I	nts/detection aboratory du aboratory du	plicate (Meli	b)			G A	- 250: - Zipla	ng Gia	ainers ass Jai besto g	s Bag							
Relinquish	ed By:	HL.		Date:	15/07/2	022	Τì	me:			Re	ceive	d By:				te:	
	·			1				16	4	5		Ph	L				50	41
L							<u> </u>						\mathcal{O}					

CUAIN OF CUSTODY FORM

ŀ

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 32571

Client Details	
Client	JK Environments
Attention	Harry Leonard
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	<u>E33942PL</u>
Number of Samples	4 Soil
Date samples received	19/07/2022
Date completed instructions received	19/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details										
Date results requested by	25/07/2022									
Date of Issue	25/07/2022									
NATA Accreditation Number 2901. This document shall not be reproduced except in full.										
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *									

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	21/07/2022	21/07/2022	21/07/2022	21/07/2022
vTRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25
vTRH C6 - C10	mg/kg	<25	<25	<25	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1
Total BTEX	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	105	107	107	108

TRH Soil C10-C40 NEPM					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	99	98	98	96

PAHs in Soil					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	98	98	102	94

OCP in Soil					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate 2-chlorophenol-d4	%	88	84	86	88

OP in Soil					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Azinphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorovos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate 2-chlorophenol-d4	%	88	84	86	88

PCBs in Soil					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate 2-fluorobiphenyl	%	100	96	104	96

Acid Extractable metals in soil					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date digested	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Date analysed	-	21/07/2022	21/07/2022	21/07/2022	21/07/2022
Arsenic	mg/kg	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	1	8	1
Copper	mg/kg	<1	<1	4	<1
Lead	mg/kg	3	5	6	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	4	<1
Zinc	mg/kg	2	5	14	2

Moisture					
Our Reference		32571-1	32571-2	32571-3	32571-4
Your Reference	UNITS	SDUP101	SDUP102	SDUP108	SDUP109
Date Sampled		12/07/2022	12/07/2022	14/07/2022	14/07/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	19/07/2022	19/07/2022	19/07/2022	19/07/2022
Date analysed	-	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Moisture	%	16	16	19	14

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105°C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD or GC-MS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
	Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil		Duplicate				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			19/07/2022	1	19/07/2022	19/07/2022		19/07/2022	
Date analysed	-			21/07/2022	1	21/07/2022	21/07/2022		21/07/2022	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	94	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	94	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	88	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	87	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	93	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	101	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	96	
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	114	1	105	105	0	112	

QUALITY COI	NTROL: TRH	I Soil C10	-C40 NEPM		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			19/07/2022	4	19/07/2022	19/07/2022		19/07/2022	
Date analysed	-			20/07/2022	4	20/07/2022	20/07/2022		20/07/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	4	<50	<50	0	93	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	4	<100	<100	0	110	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	4	<100	<100	0	107	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	4	<50	<50	0	93	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	4	<100	<100	0	110	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	4	<100	<100	0	107	
Surrogate o-Terphenyl	%		Org-020	95	4	96	99	3	82	

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			19/07/2022	[NT]		[NT]	[NT]	19/07/2022		
Date analysed	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022		
Naphthalene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Acenaphthylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	96		
Fluorene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	86		
Phenanthrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	100		
Benzo(a)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	88		
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	98		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-022	116	[NT]		[NT]	[NT]	104		

QUAI	ITY CONTRO	DL: OCP i	n Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			19/07/2022	[NT]		[NT]	[NT]	19/07/2022		
Date analysed	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022		
alpha-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	80		
Hexachlorobenzene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	82		
gamma-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	92		
delta-BHC	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104		
Heptachlor Epoxide	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	88		
gamma-Chlordane	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	84		
alpha-chlordane	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	94		
Dieldrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	80		
Endrin	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan II	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	116		
Endrin Aldehyde	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	84		
Methoxychlor	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate 2-chlorophenol-d4	%		Org-022	92	[NT]		[NT]	[NT]	94		

QUAL	ITY CONTR	OL: OP in	ı Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			19/07/2022	[NT]		[NT]	[NT]	19/07/2022	
Date analysed	-			22/07/2022	[NT]		[NT]	[NT]	22/07/2022	
Azinphos-methyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyrifos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	88	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	90	
Diazinon	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	112	
Dichlorovos	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	120	
Fenitrothion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	92	
Malathion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 2-chlorophenol-d4	%		Org-022	92	[NT]		[NT]	[NT]	94	

QUALIT	Y CONTRO	L: PCBs		Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			19/07/2022	4	19/07/2022	19/07/2022		19/07/2022	
Date analysed	-			22/07/2022	4	22/07/2022	22/07/2022		22/07/2022	
Aroclor 1016	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	87	
Aroclor 1260	mg/kg	0.1	Org-022	<0.1	4	<0.1	<0.1	0	[NT]	
Surrogate 2-fluorobiphenyl	%		Org-022	108	4	96	100	4	104	[NT]

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil Duplicate										
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date digested	-			20/07/2022	[NT]	[NT]	[NT]	[NT]	20/07/2022		
Date analysed	-			21/07/2022	[NT]	[NT]	[NT]	[NT]	21/07/2022		
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]	[NT]	[NT]	[NT]	103		
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]	[NT]	[NT]	[NT]	103		
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]	[NT]	[NT]	105		
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]	[NT]	[NT]	101		
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]	[NT]	[NT]	106		
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	[NT]	[NT]	118		
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]	[NT]	[NT]	104		
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]	[NT]	[NT]	[NT]	103		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Harry Leonard

Sample Login Details		
Your reference	E33942PL	
Envirolab Reference	32571	
Date Sample Received	19/07/2022	
Date Instructions Received	19/07/2022	
Date Results Expected to be Reported	25/07/2022	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	4 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8.3
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Pamela Adams	Chris De Luca									
Phone: 03 9763 2500	Phone: 03 9763 2500									
Fax: 03 9763 2633	Fax: 03 9763 2633									
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	OCP in Soil	OP in Soil	PCBsin Soil	Acid Extractable metalsin soil
SDUP101	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SDUP102	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SDUP108	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SDUP109	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TO: ENVIROLAB S 12 ASHLEY ST CHATSWOOD P: (02) 991063	REET NSW 2			JKE Job Number: Date Resu		E33942PL	 				<u>FROM</u> REAR	 OF 11	.5 WIC	nvi KS RO	AD		ner	nts	
F: (02) 991062 Attention: Ail				Required: Page:		1 of 6	•- ~- j 				P: 02- Atten	9888 tion:	5000	Ha	F: 02-	9888 eonar	d		
Location:	Moruy	a.			hleonard@ikenvironments.com.au Sample Preserved in Esky on Ice														
Sampler:	EW & A										Te	ests Re	equire	d		-		1	
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos (500mL)	Combo 3	Hđ	CEC	Clay content %	TRH/BTEX	BTEX			-		
12/07/2022		BH101	0 - 0.1	G, A	0	F: Silty Sandy Clay	x	х											
12/07/2022	Ž	BH101	0.1 - 0.3	G, A	0.2	F: Silty Sandy Clay									_				
12/07/2022	3	BH101	0.35 -0.5	G, A	0	Silty Sandy Clay			_x	x	x	х	_		_				
12/07/2022	4	ĠН102	0-0.1	Ġ, A	0	F: Silty Sandy Clav	[:] x	x				:						<u> </u>	
12/07/2022	5	BH102	0.1 - 0.3	G, A	0	F: Silty Sandy Clay													
12/07/2022	6	BH102	0.3 - 0.5	G, A	0	Silty Sandy							ļ			VIRO	<u>АВ</u>		wirolab Service 12 Ashley (
12/07/2022	7-	BH103	0-0.1	G, A	0	<u>Clay</u> F: Silty Sandy Clay	x	x									ſ	Chai P	swood NSW 200 h: (02) 9910 620
12/07/2022	8	BH103	0.1 - 0.3	G; A	0	F: Silty Sandy Clay							:		<u> </u>	b N	<u>):</u> 		300670
12/07/2022	9.	BH103	0.4 - 0.6	G, A	0	Silty Sandy Clav										ate R me R			•15 712 41645
12/07/2022	10	BH104	0-0.1	G, A	0	F: Silty Sandy Clay	x	x							R	ceiv	d h	d	ര
12/07/2022	11	BH104	0.1 - 0.3	G, A	0	F: Silty Sandy Clay						·	·		Ţ			Ambi	ELU ·
12/07/2022	n	BH104	0.3 - 0.5	G, A	0	Silty Sandy Člav						·		<u> </u>	s	ecuri	y: In	uct/B	pkan/None
12/07/2022	13	BH105	0-0.1	G, A	0	F: Silty Sandy Clay	x	x					<u> </u>	L		<u> </u>		-	
12/07/2022	l¥	BH105	0.1 - 0.3	G, A	0	F: Silty Sandy Clay				<u> </u>				<u> </u>			<u> </u>		
12/07/2022	15	BH105	0.3 - 0.5	G, A	0	Silty Sandy Clay						<u> </u>	1_	<u> - </u>	Þ,		- <u>-</u>		Services
12/07/2022	16	вн106	0 - 0.1	G, A	0	F: Silty Sandy Clay	x	×				<u> </u>		eni	Γη. Υ	1	2	+	
12/07/2022	R	BH106	0.1 - 0.3	G, A	0	F: Silty Sandy Clay					<u> </u>		4_	<u> .</u> ,	<u>-</u>	<u>_</u>	PI		\$V'o3 2500
12/07/2022	18	BH106	0.3 - 0.5	G, A	0	Silty Sandy Clav F: Silty					ŀ	<u> </u>	╡	listo	-	<u>32</u>		-	
12/07/2022		BH107	0 - 0.1	G, A	0	Sandy Clav	X	×	,		1_	╞		T ně		<u>a -</u>	41	ALC:	4
12/07/2022	20	BH107	- 0.1 - 03	G A	0	F: Silty Sandy Clay						1	1	Rer K m	ed	1/2 0)\r	-1	<u> </u>	B.3°C
12/07/2022	21	BH107	0.3 - 0.5	G A	0	Silty Sandy								\$201	ra io	ce 🤆	r i k	1_	4
12/07/2022	22	BH108	0-0.1	G, A	0	<u>Clav</u> F: Silty Sandy Clav	X	x		X	×	×	·	96-11		h act)Clow	er/No	ne -
12/07/2022	23	BH108	0.1 - 0.3	G, A	0	F: Silty Sandy Clay								<u> </u>			<u>. </u>	_ <u> </u> -	_
12/07/2022	-	BH108	0.4 - 0.6	G, A	0 د	Silty Sandy Clay]				1
Relinquishe	d By: H		limits require	Date: 1	5/07/20	22	G A - <u>P -</u> Tin	Plastione:	g Gla: k Ast : <u>Bag</u>	is Jar iestos		ceived	-				te:	<u> </u>	-
ELLO	1CL	ELS SU	dney	18	7/22	2 1320		16	75			PL.					1.2	112	on
						· · ·		Ţ.				ſ	J						-

4.4

.

<u>TO:</u>			5/		AND	CHAIN OF	<u></u>	5101			FROM	1:		-	_	-			
ENVIROLAB S	ENVIROLAB SERVICES PTY LTD					E33942PL							K						
12 ASHLEY ST				Number:								J	KĒ	nv	iro	nn	ner	nts	
CHATSWOOD		067		Date Resu	ilts	STANDARD	- · }				REAR	OF 11		KS RO	DAD				
P: (02) 99106 F: (02) 99106				Required:		X CLEAR							IE PAR			13			
L. (05) 231001											P: 02-	9888	5000		F: 02-	9888	3 5001		
Attention: Ail	een			Page:		5 of 6]				Atten	tion:			arry L				
											<u> </u>		_			ents.	com.a	¥	
Location:	Moruy	a		<u>.</u>		17 N				Sam			ed in E		n ice				
Sampler:	EW & /	AM									T (equire	d		r—			
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	WA Asbestos (500mL)	Combo 3	Hd	CEC	Clay content %	ткн/втех	втех					
14/07/2022	97	вн133	0.2 - 0.4	G, A	0	Silty Sandy Clay F: Silty											+	┞{	
14/07/2022	98	BH134	0-0.1	<u>G, A</u>	0	Sandy Clay	X	×			<u> </u>	<u> .</u>				-			
14/07/2022	99	BH134	0.1 - 0.3	<u>G, A</u>	0	F: Silty Sandy Clay Silty Sandy						<u> </u>				ļ			
14/07/2022	100	BH134	0.3 - 0.5	G, A	.o	Clav F: Silty		· 	X _	<u> </u>									
14/07/2022	101	BH135	0 - 0.1	G, A	0	Sandy Clay	X	×			<u> </u>	<u> </u>	<u> </u>			 	·	<u> </u>	
14/07/2022	102	вн135	0.1 - 0.3	G, A	0	F: Silty Sandy Clay	, 	<u> </u>	-	L -	_		<u> </u>		<u> </u>	<u> </u>			
14/07/2022	103	BH135	0.3 - 0.5	G, A	0	Silty Sandy					1_		┨		 	╄	<u> </u>		
14/07/2022	10	BH136	0-0.1	G, A	.0	F: Silty Sandy Clay	X	; X	<u> </u>		-	<u> </u>	1	-		<u> </u>	<u> </u>		l
13/07/2022	105	вн136	0.1 - 0.3	G, A	0	F: Silty Sandy Clay		<u> </u>	ļ		╡	<u> </u>	<u> </u>			-	+	+'	1
13/07/2022	106	вн136 -	0.3 - 0.5	G, A	0	Silty Sandy	h		ļ	,		<u> </u>	· · —		<u> </u>				ł
13/07/2022	107	BH137	0-0.1	G, A	0	F: Silty Sandy Clay	X	×		<u> </u>			<u> </u>					+	
13/07/2022	108	BH137	0.1 - 0.3	G, A	0	F: Silty Sandy Clay			-		·		<u> </u>				╞	+	{
13/07/2022	100	BH137	0.4 - 0.6	G, A	0	Silty Sandy Clay F: Silty	<u> </u>	<u> </u>	X	_			┨	╞					$\left\{ \right\}$
15/07/2022	110	8H138	0-0.1	G	0	Sandy Clay	 		<u> </u>			┢	X			÷	+		$\left \right $
15/07/2022	IN	BH138	0.3 - 0.5	G	0	Silty Sandy			_	<u> </u>				+				+,-	ł
14/07/2022	112	BH139	0-0.1	G	0	F: Silty Sandy Clay	. " 1 	<u> </u>		<u> </u>		<u> </u>	X	-	+	+			+
14/07/2022	113	BH139	0.3 - 0.5	G	0	Silty Sandy Clav F: Silty		·	+-	+ -		<u> </u> -		+	+-	+		- .	+
15/07/2022	114	BH140	0 - 0.1	G	0	Sandy Clay	<u>.</u>			<u>-</u> -	<u> </u>	· _ *	×	· , , ,	+ -	+		<u>. </u>	4
15/07/2022	(15	BH140	0.25 - 0.45	G	0	Silty Sandy Clay	-		<u> </u>	╞	+	+	<u> </u>	+-	- -	- -		+	┥
15/07/2022	116	BH141	- - - - 0 - 0.1	G	0	F: Silty Sandy Clav	<u> </u>		<u> </u>	<u>:</u>	+		<u> </u>	┉	+	╋			-
15/07/2022	117	BH141	0.4 - 0.6	·G	0	Silty Sandy Clay F: Silty	-			+-				+-	+	╉	·		+
14/07/2022	118	BH142 .	0 - 0.1	G	0	Sandy Clav		-	+	+	_ _	+-	<u> </u>			- <u>.</u>		+	-
14/07/2022	11°		0.2 - 0.6	G	0	Silty Sandy Clay	<u> </u>										<u> </u>		4
)	-	SDUP101		G	·	F: Silty Sandy Clay	<u> </u>	<u> </u>		<u> </u>	_		<u>.</u>					·	4
)-	-	SDUP102		G	<u> </u>	F: Silty Sandy Clay	×							_1					\dashv
SDUP101 -	Inter-la	its/detection boratory dup boratory dup	licate	ed):			Sar G - A -	mple C 250m Ziplou Plasti	g Gla k Ast	ss Jar Destos	Bag	<u>.</u>				_ ,_			
Relinquishe	d By: H	L		Date: 1	.5/07/20)22	Tir	ne:			Re	ceiveo				P	ate:		
		Cinc	lenne	18-	7/27	130	<u>_</u>	16	4 23	<u>,</u>		K	71	20	<u>n_</u>		15	·hi	ᅶ

AND ALLEN OF CUSTODY FORM

300620 ۰.

> ~ կ։ -

.

-

<u>TO:</u> ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200			2067 Date Results STANDARD					<u></u>			<u>FROM</u> REAR	J J OF 11	.5 WIC	KS RC	DAD		nen	ts	
				Required: Page: 16 of 6.							MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Harry Leonard hleonard@jkenvironments.com.au							یر در در د سر ۱	
	<u> </u>		<u> </u>				3.				Sam	pie Pro		_	_				
Locat		Möruya EŴ & A		~		<u> </u>						Te	ests R	equire	d				
	Date mpled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PIÐ	Sample Description	Combo 6	WA Asbestos (500mL)	Combo 3	нd	CEC	Clay content %	ткн/втех	втех				
14/0)7/2022	120	SDUP103	-	G		F: Silty Sandy Clay		 	<u> </u>					<u> </u>				
14/0	7/2022	(21	SDUP104	-	G		F: Silty Sandy Clay		<u> </u>		ļ				<u>.</u>				
14/0	07/2022		SDUP105	-	G		F: Slity Sandy Clav	<u> </u>	<u> </u>	╡	<u> </u>		<u> </u>		<u> </u>			<u> </u>	
14/0	07/2022	123	SDUP106				F: Silty Sandy Clav	_	-	<u> </u>		<u> </u>	<u> </u>	ļ					· .
14/0	07/2022		SDUP107		G		F: Silty Sandy Clay				<u> </u>	<u> </u>	<u> </u>		ļ			<u> </u>	
14/0	07/2022	<u> </u>	SDUP108	-	G		F: Silty Sandy Clay	X		1_	<u> </u>	<u> </u>	-		╄ -		-	<u> </u>	·
∕ <u> </u>	07/2022		SDUP109		G		F: Silty Sandy Clay F: Silty	x		<u> </u> -					┨			╞╴╼	
	07/2022	125	SDUP110	-	G		F: Silty Sandy Clay	<u> </u>			<u> </u>			ľ	-	-		╄	
13/0	07/2022	+	TBS101		G		-	_		<u> </u>		<u> </u>	╄		×		+.		<u> </u>
13/	07/2022	127			G		<u></u>		<u> </u>		- 	<u>.</u>	+	<u></u>	·): -\	+		
13/	/07/2022		FR-HA101	-	G		-	1			<u> </u>	╄-		+	X		_	+	<u> </u> -
13/	/07/2022		TS101	-	G		-				_ <u>_</u> ,	+	<u>. .</u> _		×			+	
15,	/07/2022	+	TS102	-	G		-				- -		+	<u> </u>		+			+
F		-													. 	+	+		· <u> </u>
	·	-											+		_	+			<u> </u>
		+							Ľ.					-		4-			+
F		-1	<u> </u>							_							+-	-	+
-		;	1 × 9 9				<u> </u>	_				_ _					+		
		1-							_ _										- -
		1-					. P							<u>.</u>		_	~ .		
┢	<u> </u>	+-	·	1									_ _	\bot	<u> </u>		_ _		
		-								<u> </u>									
┢	<u> </u>	+-	- <u> </u>													_			_ _
		+-																	
-			·+					Τ											
si	DUP108 -	Intra-la	aboratory du	n limits requi plicate (Mell plicate (Mell	b)	_!		G	- 250	mg Ģi ock A	ainers ass Ja sbesto g	s Bag							
R	elinquish	ed By: I			Date:	15/07/	2022	<u> </u>	ime:			R	eceive	ed Bγ:				ate:	/
				IEMNe	1	r17h	2 30)	16	<u>4</u>	5		R	4				15	150

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).*

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 ²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. <u>Matrix Spikes</u>

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

```
\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}
```


Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. <u>INTRODUCTION</u>

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in the SAQP. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Inter-laboratory duplicate (soil)	SDUP101 (primary sample BH101 0-0.1m)	Approximately 5% of primary samples	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Inter-laboratory duplicate (soil)	SDUP102 (primary sample BH106 0-0.1m)		Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Inter-laboratory duplicate (soil)	SDUP103 (primary sample BH130 0-0.1m)	As above	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Inter-laboratory duplicate (soil)	SDUP104 (primary sample BH129 0-0.1m)		Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Trip blank (soil)	TB101 (13/07/2022)	One for the investigation to demonstrate adequacy of storage and transport methods	BTEX
Trip spike (soil)	TS101 (13/07/2022)	One for the investigation to demonstrate adequacy of preservation, storage and transport methods	BTEX
Rinsate (soil hand auger)	FR-HA101 (13/07/2022)	One for the investigation to demonstrate adequacy of decontamination methods	BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

JKEnvironments

Method Blanks

• All results less than PQL.

B. DATA EVALUATION

1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times generally in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

JKE note that the temperature on receipt of soil samples was reported to be up to 14°C. JKE understand that the temperature is measured at the laboratory using an infrared temperature probe by scanning the outside of the sample container (i.e. one sample jar/container at the time of registering the samples). This procedure is not considered to be robust as there is a potential for the outside of the jar to warm to ambient temperature, or at least to increase from that of the internal contents, relatively quickly. On this basis, JKE is of the opinion that the temperatures reported on the Sample Receipts are unlikely to be reliable or representative of the overall batch. This is further supported by the trip spike recovery results (discussed further below) which reported adequate recovery in the range of 85% to 107%.

Whilst it could be argued that 15% loss of volatiles may have led to these contaminants being under-reported (i.e. the lower end of the trip spike recovery was 85%), it is noted that all BTEX results and volatile TRHs (F1 and F2) were below the PQLs and even a nominal 15% increase of TRH/BTEX concentrations in these samples would not result in exceedance of the SAC.

Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. <u>Laboratory PQLs</u>

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC.

JKEnvironments

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. One RPD non-conformance was reported for copper in SDUP102/BH106 (0-0.1m). As both the primary and duplicate sample results were less than the SAC, the RPD exceedance is not considered to have had an adverse impact on the data set as a whole.

Field/Trip Blanks

During the investigation, one soil trip blank was placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

We note that the trip blank was intended to be analysed for the broader suite of CoPC, however, this did not occur due to an error by JKE. Notwithstanding, contaminant concentrations in all soil samples were low and there was no evidence of any cross-contamination impacts associated with sample collection, storage or transport. Therefore, this error is not considered to impact the overall data quality.

Rinsates

All results were below the PQL. This indicated that cross-contamination artefacts associated with sampling equipment were not present and the potential for cross-contamination to have occurred was low.

We note that the rinsate was intended to be analysed for the broader suite of CoPC, however, this did not occur due to an error by JKE. Notwithstanding, contaminant concentrations in all soil samples were low and there was no evidence of any cross-contamination impacts. Therefore, this error is not considered to impact the overall data quality.

Trip Spikes

The results ranged from 96% to 98% and indicated that field preservation methods were appropriate.

Overall Filed QA/QC

It is acknowledged that rinsates, blanks and spikes were not collected/analysed for each day of fieldwork. This is a deviation to the requirements of the NEPM (2013). However, considering that all sampling was undertaken by the same field team using consistent, standardised sampling and sample handling/transport procedures, the field QA/QC samples that were collected and analysed for the DSI are considered to be adequately representative for all sampling days.

4. Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation. A review of the laboratory QA/QC data identified the following minor non-conformance:

• Sample BH115 (0-0.1m) was below the minimum 500mL sample volume as per the NEPM 2013 guidance. As asbestos was not detected in the sample and all results were all below the SAC, this is not considered to have an impact on the data quality; and

• Sample BH133 (0-0.1m) was below the minimum 500mL sample volume as per the NEPM 2013 guidance. As asbestos was not detected in the sample and all results were all below the SAC, this is not considered to have an impact on the data quality.

C. DATA QUALITY SUMMARY

JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These nonconformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

Appendix H: JKE Sampling, Analysis and Quality Plan (SAQP)

REPORT TO HEALTH INFRASTRUCTURE

ON SAMPLING, ANALYSIS AND QUALITY PLAN

FOR PROPOSED EUROBODALLA HEALTH SERVICE

AT LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW

Date: 17 December 2021 Ref: E33942PLrpt-SAQP DRAFT

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Report reviewed by:

AL

Harry Leonard Senior Environmental Scientist

Brendan Page Principal Associate | Environmental Scientist

CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E33942PLrpt-SAQP DRAFT	Draft Report	17 December 2021

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Table of Contents

1	INTRO	DOUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	Scope of Work	2
2	SITE I	NFORMATION	3
	2.1	JKE DESKTOP PSI	3
	2.2	JKE INTRUSIVE PSI	3
	2.3	SITE IDENTIFICATION	4
	2.4	SITE LOCATION AND REGIONAL SETTING	4
	2.5	TOPOGRAPHY	4
	2.6	GENERAL SITE DESCRIPTION	5
3	SUMI	MARY OF GEOLOGY AND HYDROGEOLOGY	6
	3.1	REGIONAL GEOLOGY AND SITE SUBSURFACE CONDITIONS	6
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	6
	3.3	Hydrogeology	6
	3.4	Receiving Water Bodies	6
	3.5	SUMMARY OF SITE HISTORY INFORMATION	7
4	CONC	EPTUAL SITE MODEL	8
	4.1	POTENTIAL CONTAMINATION SOURCES AND CONTAMINANTS OF POTENTIAL CONCERN	8
	4.2	Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways	9
5	SAM	PLING, ANALYSIS AND QUALITY PLAN	11
	5.1	DATA QUALITY OBJECTIVES (DQO)	11
	5.2	Soil Sampling Plan and Methodology	15
	5.3	LABORATORY ANALYSIS AND ANALYTICAL RATIONALE	17
	5.4	Reporting Requirements	18
6	LIMIT	ATIONS	19

List of Tables

Table 2-1: Site Identification	4
Table 4-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	8
Table 4-2: CSM	9
Table 5-1: Soil Sampling Plan and Methodology	15
Table 5-2: Laboratory Details	17

Attachments

Appendix A: Figures Appendix B: Proposed Development Plans Appendix C: Report Explanatory Notes Appendix D: Guidelines and Reference Documents

Abbreviations

Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil Below Ground Level	ASS BGL
	BGL
Benzene, Toluene, Ethylbenzene, Xylene Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminated Land Management Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Environment Protection Authority	EPA
Ecological Screening Level	ESL
Health Investigation Level	HILS
Health Screening Level	HSL
International Organisation of Standardisation	ISO
JK Environments	JKE
Map Grid of Australia	MGA
National Association of Testing Authorities	ΝΑΤΑ
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН
Polychlorinated Biphenyls	PCBs
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Standard Penetration Test	SPT
State Significant Development	SSD
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units

Metres BGL Metres Milligrams per Kilogram Parts Per Million Percentage mBGL m mg/kg ppm %

1 INTRODUCTION

Health Infrastructure ('the client') commissioned JK Environments (JKE) to prepare a Sampling, Analysis and Quality Plan (SAQP) for the Detailed Site Investigation (DSI) associated with the proposed Eurobodalla Health Service development which is to occur over part of Lot 6 in DP1212271 Princes Highway, Moruya, NSW. The proposed development area is referred to as 'the site'. The site location is shown on Figure 1 and the investigation will be confined to the site area as shown on Figure 2 in Appendix A.

This report has been prepared to document the SAQP for the DSI. The site is to be investigated to address the requirements under State Environmental Planning Policy No.55 – Remediation of Land (1998)¹, for the purpose of a State Significant Development (SSD) application.

JKE has previously undertaken preliminary investigations for the site including a desktop preliminary site investigation (PSI) (Ref: E33942PLrpt, dated 7 April 2021)² and an PSI with intrusive investigation (Ref: E33942PLrp2.Rev1, dated 15 December 2021)³. A brief summary of the previous investigation findings is presented in Section 2.

1.1 Proposed Development Details

Based on the most recent overall master plan prepared by Conrad Gargett (Project No. 20157 dated 26 November 2021), JKE understands that the location of the main development is centred over the northeastern portion of the site and consists of a three-storey main hospital building on the western face of the existing hillside. The plan for the main hospital building proposes the lower ground floor of the building to be constructed mid-slope and there will require partial excavation into the hill to depths of between approximately 2m to 4m below the existing ground levels. The western end of the building may require suspension or filling to accommodate the slope of the hill.

The plan also indicates the construction of internal roads, car parking, helicopter landing site and pedestrian paths throughout the site as well as potential future infrastructure in the southern portion of the site.

A copy of the Preliminary Masterplan Drawing (Project 20157, Drawing Number EHS-HI-AR-DWG-SD-10PW10) issued to JKE is attached in Appendix B.

1.2 Aims and Objectives

The primary aim of the DSI is to address the data gaps identified in the previous investigations, in order to characterise potential contamination-related risks in the context of the proposed development and to establish whether further investigation and/or remediation is required. A secondary aim is to provide additional waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

¹ State Environmental Planning Policy No. 55 – Remediation of Land 1998 (NSW) (referred to as SEPP55)

² JKE, (2021a). Report to Health Infrastructure on Preliminary Site Investigation (Desktop Contamination Assessment) for Proposed Eurobodalla Health Service at Lot 6 DP1212271, Princes Highway, Moruya, NSW. (Referred to as the Desktop PSI)

³ JKE, (2021b). Report to Health Infrastructure on Preliminary Site Investigation (Intrusive Investigation) for Proposed Eurobodalla Health Service at Lot 6 DP1212271, Princes Highway, Moruya, NSW. (Referred to as the Intrusive PSI)

The objectives are to:

- Assess the soil contamination conditions to address the data gaps;
- Provide additional waste classification data for off-site disposal of soil;
- Establish the need for further investigation and/or remediation; and
- Comment on site suitability for the proposed development, with regards to contamination.

1.3 Scope of Work

This SAQP has been prepared generally in accordance with a JKE proposal (Ref: EP54457PL.Rev1) of 19 November 2021. The scope of work included preparation of an SAQP with regards to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)⁴, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁵ and SEPP55. A list of reference documents/guidelines is included in the appendices.

⁴ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

⁵ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 JKE Desktop PSI

The Desktop PSI included a review of site information, including background and site history information and a site walkover inspection. Soil sampling was not undertaken.

Based on the information reviewed and a weight of evidence assessment of the site history documentation, and site observations made by JKE, it was considered that the site has been historically used for grazing purposes since at least 1961 and it was presumed to have been of similar use before this time. The immediate surrounds appeared to have been used for similar purposes, with the exception of the low-density residential properties to the north and south of the site. There were no historical structures on site and the site inspection and aerial photographs did not identify evidence of filling.

Based on the scope of work undertaken for this assessment, JKE identified the following potential contamination sources/areas of environmental concern (AEC):

- Sediment runoff from nearby stormwater drains; and
- Historical agricultural use.

The conclusions of the Desktop PSI were that based on the potential contamination sources/AEC identified, there is a potential for site contamination and further investigation of the contamination conditions was considered to be required. A preliminary intrusive investigation was recommended in the first instance to assess the potential for the contaminants of potential concern (CoPC) to occur in soil. The results from the preliminary intrusive investigation of a DSI.

2.2 JKE Intrusive PSI

The scope of the intrusive PSI was conducted via sampling of the soil on site to obtain preliminary data on the potential for soil contamination. The soil laboratory results did not encounter any concentrations of contaminants above the human-health or ecological Site Assessment Criteria (SAC).

Detectable concentrations of total recoverable hydrocarbons (TRH) (F2) and TRH (F3) were encountered within the natural clay soil sample within BH26 (0.2-0.3m). These concentrations were well below the SAC and therefore were not considered to pose a risk to site receptors. However, considering there were no other detectable concentrations of TRH above the laboratory PQL from the remaining samples analysed, further investigation was recommended within the vicinity of BH26 to properly rule out any widespread TRH contamination issues.

Several data gaps were identified in the report including some site history information not being reviewed, and limited sampling data.

Based on the potential contamination sources/areas of environmental concern (AEC) identified, and the potential for contamination, further investigation of the contamination conditions was considered to be required. It was noted that agricultural activities are listed in Table 1 of the SEPP55 Planning Guidelines as activities that may cause contamination.

The Intrusive PSI report recommend that a DSI be undertaken to address the data gaps identified. It was recommended that the supplementary site history information be reviewed initially and the CSM to be updated based on this information.

2.3 Site Identification

Unknown (title records were not searched)
Princes Highway, Moruya, NSW
Part of Lot 6 in DP1212271
Vacant/Grazing
Medical Facility
Eurobodalla Shire Council
R2: Low Density Residential; and RU1: Primary Production
22 hectares (220,000m ²)
7-40
E: 237804.255
N: 6020784.595
Figure 1
Figure 2
Figure 3

2.4 Site Location and Regional Setting

The site is located in a predominantly residential and rural area of Moruya and is bound by Princes Highway to the south and partially by Albert Street to the north. Racecourse Creek is located approximately 550m to the north-west of the site.

2.5 Topography

The site is located within an area of undulating regional topography. The site itself comprises two hill peaks in the north-east and south-east corners of the site. The south-east hill slopes down towards the north and west at a gradient of between approximately 7° to 11°. The north-east hill slopes down towards the north, west and south at a gradient of between approximately 3° to 7°.

There are two tributaries (creek lines) that extend westward through the site (see Figure 2) and flow towards the low-lying areas, further west of the site. These appeared to flow towards more significant tributaries of Racecourse Creek, beyond the western site boundary.

2.6 General Site Description

A walkover inspection of the site was undertaken by JKE on 25 March 2021 as part of the Desktop PSI. At the time of the inspection, the site was vacant and utilised for grazing of a small herd of cattle. The majority of the site was grassed, with some large native eucalypt trees across the eastern and southern portions of the site. Granite bedrock outcropping was visible at the highest points of the hills, with large boulders also visible at the surface mid-way down the hill slopes.

The site was fenced by a timber and wire fence that ran the entire perimeter of the property and appeared in good condition. The site appeared to follow that natural topography of the land and surrounds, with no evidence of cut or filling. There was no evidence of filling or other waste in the vicinity of the creek lines. The small dams appeared to have been formed by pushing up the native soils to form small embankments on the low side of the creek lines.

The surface water runoff is presumed to follow in sympathy with the varying slopes of the site, then generally tending towards the west along the creek lines. A stormwater drain located on Albert Street to the north of the site appeared to drain onto the site (see Figure 2) and meetup with the northern-most creek line. From the observation during the site walkover, the creek lines were found to support various forms of freshwater ecology such as fish, frogs and aquatic plants, as well as native plant life.

The surround areas of the site included: Braemar Drive and low density residential houses to the north; the Princes Highway and low density residential to the south; and vacant/grazing land to the east and west. JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

3 SUMMARY OF GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology and Site Subsurface Conditions

Regional geological information was reviewed for the Desktop PSI. The information indicated that the site is underlain by Moruya Tonalite of the Moruya Suite, which typically consists of tonalite, granodiorite, biotite, granite, adamellite, diorite and gabbro.

The Moruya 1:25,000 Quaternary Geology Sheet indicated that most of the site is underlain by bedrock of the Moruya Supersuite. However, along to the creek lines adjacent to the western site boundary, Quaternary aged alluvial and colluvial fan soils are mapped. These soils comprise *"fluvial sand, silt, gravel, clay"*.

The Intrusive PSI encountered fill (topsoil) from the surface to depths of approximately 0.1m to 0.3m below ground level (BGL), underlain by natural clay soils to depths of approximately 0.3m to 1.4mBGL. The topsoil was deemed to be "fill" as it was expected the topsoil was disturbed via grazing activities etc. However, it is noted that the topsoil is not deemed to be imported fill. Granite bedrock was encountered beneath the natural clay in all boreholes and extended to the termination depth.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

A review of the acid sulfate soil (ASS) risk map prepared by Department of Land and Water Conservation (1997)⁶ indicated that the site is partially located in an area classed as having 'low probability' of occurrence of ASS materials within 1 metre of the ground surface.

ASS information presented in the Desktop PSI indicated that a Class 2 ASS risk area located to the west of the site, encroaches slightly onto the south-west corner of the site. Works in a Class 2 risk area that could pose an environmental risk in terms of ASS include all works below existing ground level and works by which the water table is likely to be lowered. This small area of Class 2 ASS risk is located on the low-lying area at the base of the western facing hillslope and is not located within an area of the proposed development.

3.3 Hydrogeology

There was a total of 44 registered bores within the report buffer of 2,000m. The nearest registered bore was located approximately 418m from the site. This was utilised for domestic/stock purposes. The bores were generally registered for a mixture of monitoring, domestic and domestic stock purposes. The potential for viable groundwater abstraction and use of groundwater under these conditions was considered to be low. Use of groundwater is not proposed as part of the development. The majority of the registered bores are located in the low-lying land to the west of the site.

3.4 Receiving Water Bodies

Several small dams were located along the creek lines and these appeared relatively full during the inspection due to the recent rain event. The upper sections of the creek lines on site were not expected to permanently hold water. The site location and regional topography indicates that water from the creek lines on site would flow towards the west, linking up with other tributaries of Racecourse Creek.

⁶ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 8926S3, Moruya, Ed 2)

3.5 Summary of Site History Information

Based on the information reviewed and a weight of evidence assessment of the site history documentation (including that from the Desktop PSI), and site observations made by JKE, we consider that the site has been historically used for grazing purposes since at least 1961 and it is presumed to have been of similar use before this time. The immediate surrounds appeared to have been used for similar purposes, with the exception of the low-density residential properties to the north and south of the site.

There were no historical structures on site and the site inspection and aerial photographs did not identify evidence of filling.

4 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

4.1 Potential Contamination Sources and Contaminants of Potential Concern

The potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC) are presented in the following table:

Source / AEC	CoPC
Sediment runoff from nearby stormwater drains – There is a potential for contaminant transport in sediment/runoff from nearby roadways. A stormwater pipe discharges in an area adjoining the central northern boundary of the site (see Figure 2). It is anticipated that the stormwater (and sediment loading within the stormwater) could eventuate in the northern-most creek line and flow westward to the low- lying area beyond the western end of the site. We note that the land use in these nearby, off-site areas are benign (i.e. residential, rather than heavy industry) and the potential for contamination to be associated with this AEC is relatively low.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
 <u>Historical agricultural use</u> – The site appears to have been used for low-intensity grazing purposes. This could have resulted in contamination across the site via use of machinery and potential (although unlikely) use of pesticides. However, we note that the intrusive PSI did not identify any widespread impacts from contamination. There was no evidence of on-site irrigation pipework (e.g. pipework potentially containing asbestos) during the inspection, however, the presence of such pipework cannot be ruled out 	Heavy metals, TRHs, PAHs, OCPs and asbestos JKE note that OCPs only became commercially available in the 1940s. Prior to this time pesticides were predominantly heavy metal compounds.
Potential TRH Impact at BH26 – low concentrations of TRHs were detected in BH26. The occurrence of TRHs at this location was inconsistent with the remaining analysis results as TRHs were not detected elsewhere.	TRHs (based on Intrusive PSI data), and possibly (although unlikely) BTEX

Table 4-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Based on the site inspection and historical assessment, JKE is of the opinion that there is a low potential for the site to have been used for activities associated with per- and polyfluoroalkyl substances (PFAS). We note that Appendix B2 of the PFAS National Environmental Management Plan (2020)⁷ refers to 'agriculture' more

⁷ Heads of EPA Australia and New Zealand, (2020). *PFAS National Environmental Management Plan Version 2.0* (referred to as PFAS NEMP)

broadly as an activity potentially associated with PFAS, however this relates to use of firefighting foams in the poultry industry, or with adjuvant or active ingredients in fertilisers and pesticides. There were no pesticides detected in the soil samples during the Intrusive PSI.

Given the apparent low-intensity grazing activities at the site, use of pesticides is unlikely. It is also considered unlikely that stock feed (which is another potential source of OCPs) would have been imported. On this basis, we do not consider PFAS to be CoPC. This should be re-evaluated in the event that OCPs are identified in soil during the DSI.

4.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Potential mechanism for	The potential mechanisms for contamination are most likely to include 'top-down'
contamination	impacts, spills and runoff from stormwater/sediment.
Affected media	Soil has been identified as the potentially affected medium.
	The potential for groundwater (or surface water) impacts is considered to be relatively low. However, this would need to be considered in the event mobile/leachable contamination was identified in soil.
	The potential for soil vapour impacts is also considered to be relatively low. Soil vapour would need to be considered in the event that volatile TRHs, BTEX and/or naphthalene (PAH compound) was identified in soil.
Receptor identification	Human receptors include site occupants/users (including adults and children), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users in a residential setting.
	Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and freshwater ecology in the dams and creeks.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary contact and ingestion.
	Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings and basements.
Potential exposure mechanisms	The following have been identified as potential exposure mechanisms for site contamination:
incentaliisiiis	 Vapour intrusion into the proposed basement and/or building (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas;

	 Migration of stormwater (and sediment) onto the site and into the creek lines/dams via overland flows; and Migration of groundwater into nearby water bodies, including aquatic ecosystems, or to areas where irrigation bores exist.
Data Gaps	 The data gaps from the Intrusive PSI are were as follows: A land titles search was outside the scope of the desktop assessment. Although it was considered unlikely that information from the land titles records would alter the CSM, a search of these records was recommended for completeness; The review of council records was limited to planning-related information within the section 10.7 certificates and/or within the Local Environmental Plan. Although it was considered unlikely that additional information from the local council would alter the CSM, a search of local records in relation to the property file and building/development records was recommended for completeness; A search of SafeWork NSW records for licences to store dangerous goods was outside the scope of the previous investigations. Although it was considered unlikely that SafeWork NSW records existed for the site, a search of these records was recommended for completeness; and Soil sampling was limited to the borehole locations defined by the client for the geotechnical investigation. Sampling was not undertaken across the entirety of the site and limited data was collected from the overland flow/potential stormwater wash zone in the north-west portion of the site.

5 SAMPLING, ANALYSIS AND QUALITY PLAN

5.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) have been developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

5.1.1 Step 1 - State the Problem

Additional investigation data is required to address the data gaps outlined in the Intrusive PSI, further assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the consent authority in exercising its planning functions in relation to the development proposal.

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

5.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the assessment are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Are any of the laboratory results above the site assessment criteria?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is remediation required?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

5.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and supplementary site history documentation (including council records, SafeWork NSW records and historical land title records);
- Sampling of potentially affected media (soil);
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining;
- Laboratory analysis of soils for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.

Soil laboratory analysis will focus on fill (topsoil) samples. Deeper natural samples will be analysed at locations where the overlying fill is impacted by mobile contaminants, or in the event that contamination indicators (e.g. staining, odours etc) are encountered.

5.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown in Figures 2 and 3. Soil sampling will be limited to a target depth of approximately 0.3-0.4mBGL, where practicable.

It is anticipated that the sampling will be completed in January 2021 (temporal boundary), with a single sampling event for collection of soil (albeit over multiple days).

5.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

5.1.5.1 Tier 1 Screening Criteria

Soil data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013). Health Investigation Levels (HIL) for 'residential with accessible soils' exposure scenario (HIL-A) and Health Screening Levels (HSL) for a 'low-high density residential' exposure scenario (HSL-A/HSL-B). Adoption of the land use type A exposure scenario for a hospital is considered to be conservative, however, this approach aligns with the philosophy of the NEPM 2013 which promotes use of more conservative criteria to consider the most sensitive site receptors.

HSLs for hydrocarbons will be derived conservatively using a sand soil type and a depth interval of 0-1m. Where appropriate, these may be adjusted to account for different soil types and sample depths.

HSLs for direct soil contact will be adopted based on the values presented in the CRC Care Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)⁸. Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) will also be considered following evaluation of human health and ecological risks, and risks to groundwater.

Regarding the ecological screening criteria, the Ecological Investigation Levels (EIL) will be derived using the Ambient Background Concentration (ABC) from the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)⁹ and using site specific physiochemical data for soil pH, clay content and Cation Exchange Capacity (CEC) to select the Added Contaminant Limit (ACL) values in Schedule B(1) of NEPM (2013). EILs and Ecological Screening Levels (ESLs) will be based on an 'urban residential and public open space' (URPOS) exposure scenario.

Waste classification data is to be assessed in accordance with the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁰.

Soil data will be assessed as being above or below the SAC and with regards to potential or complete sourcepathway-receptor (SPR) linkages. Where appropriate, data are assessed against valid statistical parameters to characterise the data population. This may include calculation and application of mean values and/or 95% upper confidence limit (UCL) values for the data set, with regards to the NEPM (2013) framework and other

⁸ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

⁹ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission ¹⁰ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

relevant guidelines made under the CLM Act 1997. UCLs are considered acceptable where the UCL is below the SAC, the standard deviation of the data is less than 50% of the SAC and none of the individual concentrations are more than 250% of the SAC.

For this investigation, the following decision rules will apply:

- If the CoPC concentrations are below the SAC, then the data will be compared directly to the SAC without statistical analysis;
- For soil data collected from the wash zone AEC, if any individual CoPC (with the exception of asbestos) concentration is above the SAC, then statistical analysis will be undertaken. This will include calculation of the 95% upper confidence limit (UCL) value for the data set, with regards to the NEPM (2013) framework and other relevant guidelines made under the CLM Act 1997. The UCL will be considered acceptable where the UCL is below the SAC, the standard deviation of the data is less than 50% of the SAC and none of the individual concentrations are more than 250% of the SAC;
- If any results area above AEC from the samples collected for broader site coverage, the need for further investigation will be considered; and
- If asbestos concentrations are encountered above the SAC or in the top 100mm of soil, then asbestos will be deemed a contaminant of concern for remediation purposes.

5.1.5.2 Quality Assurance/Quality Control (QA/QC)

Field QA/QC will include analysis of inter-laboratory duplicates (minimum of 5% of primary samples), intralaboratory duplicates (minimum of 5% of primary samples), and one trip spike, trip blank and rinsate sample (to assess the adequacy of field practices).

The suitability of the laboratory data is to be assessed against the laboratory QA/QC criteria which will be outlined in the laboratory reports. These criteria are developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory will be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the most conservative concentration reported are to be adopted.

5.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are to be considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this will be provided.

5.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors when assessing laboratory data, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results will be undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis (H_0) is that the 95% UCL for the CoPC is greater than the SAC. The alternative hypothesis (H_A) is that the 95% UCL for the CoPC is less than the SAC. Alternative considerations are made regarding asbestos based on an assessment of multiple lines of evidence.

Potential outcomes include Type I and Type II errors as follows:

- Type I error of determining that the soil is acceptable for the proposed land use when it is not (wrongly rejects true H_0), includes an alpha (α) risk of 0.05; and
- Type II error of determining that the soil is unacceptable for the proposed land use when it is (wrongly accepts false H_0), includes beta (β) risk of 0.2.

Data Quality Indicators (DQI) for field and laboratory QA/QC samples are defined below. An assessment of the DQI's is to be made in relation to precision, accuracy, representativeness, completeness and comparability.

Field Duplicates

Acceptable targets for precision of field duplicates will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field Blanks

Acceptable targets for trip blank samples will be less than the PQL.

Trip Spikes

Acceptable targets for trip spike samples will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data will be assessed against the laboratory QA/QC criteria. These criteria are developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the typical limits is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics; and
- 60-140% recovery acceptable for organics.

Surrogate Spikes

• 60-140% recovery acceptable for general organics.

Method Blanks

• All results less than PQL.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence will be reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is to be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, we will adopt the most conservative concentration reported.

5.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data will be collected. The sampling plan and methodology are outlined in the following sub-sections.

5.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this DSI is outlined in the table below:

Aspect	Input
Sampling Density	Samples will be collected from approximately 42 locations for the DSI. Reference is to be made to the proposed sample locations shown on Figure 3 in Appendix A.
	The sampling density within the 'wash zone' will be obtained from approximately 27 locations as shown on the attached Figure 3. This number of locations met the minimum sampling density for hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995) ¹¹ .
	The sampling density across the remainder of the site has not been designed to meet the minimum density recommended in the EPA Sampling Design Guidelines. Alternatively, a decreased density is proposed on the basis of one sample per hectare (1 per 10,000m ²). This is considered reasonable based on the low contaminant concentrations reported during the Intrusive PSI, the lack of point source AEC and the perceived low potential for contamination across the broader site area.
	Five targeted locations will be sampled in the vicinity of BH26.
Sampling Plan	Sampling locations within the 'wash zone' will be placed on a systematic sampling plan with a grid spacing of approximately 20m within the 'wash zone'. The sampling locations were placed on a

Table 5-1: Soil Sampling Plan and Methodology

¹¹ NSW EPA, (1995), Contaminated Sites Sampling Design Guidelines. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
	 systematic plan with a grid spacing of approximately 20m between sampling location. A systematic plan was considered suitable to identify hotspots to a 95% confidence level and calculate UCLs for specific data populations. The following hotspot diameters have been calculated: Circular hotspot diameter with a 95% confidence level (K value of 0.59) – 23.6m; and Elliptical hotspot diameter with a 95% confidence level (K value of 0.9) - 36m along the long dimension and 18m along the short dimension. Sample locations across the remainder of the site are on a systematic grid spacing of 100m only in the areas of the site where sampling had not occurred previously. This sampling plan is considered suitable to provide spatial coverage of the site.
	An additional five sample locations will be placed around BH26, where a low detection of TRH was encountered during the Intrusive PSI. These additional locations are shown on Figure 3 in Appendix A.
Set-out and Sampling Equipment	Sampling locations will be set out using a hand-held GPS unit. Sample locations will be drilled/excavated using hand held equipment (shovel and hand auger) were applicable with samples collected directly from the equipment or in-situ.
Sample Collection and Field QA/QC	All locations are to be logged to an appropriate standard in accordance with NEPM (2013) and all samples will be documented on the logs. Samples are to be placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis will be placed in zip-lock plastic bags. During sampling, soil at selected depths will be split into primary and duplicate samples for field QA/QC analysis. The splitting procedure will include alternate filling of the jars with soil. Homogenisation of duplicate samples will not occur due to the clayey nature of the soil.
Field Screening	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp will be used to screen the samples for the presence of volatile organic compounds (VOCs). This will occur on soil samples using the soil sample headspace method (i.e. from partly filled zip-lock plastic bags following equilibration of the headspace gases). PID calibration records will be maintained throughout the project.
	 Bulk field screening for asbestos will occur from the surficial profiles in general accordance with the NEPM (2013) methods. This will include the following: A representative bulk sample was collected from the surface profile. The bulk sample intervals will be recorded on the borehole/test pit logs; Each sample was weighed using an electronic scale; Each bulk sample was passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement. Cohesive soils will be placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre cement or any other suspected asbestos materials will be noted on the field records; and If observed, any fragments of fibre cement in the bulk sample will be collected, placed in a ziplock bag and assigned a unique identifier. Calculations for asbestos content will be undertaken based on the requirements outlined in Schedule B1 of NEPM (2013).

Aspect	Input
	Bulk sampling might not be achievable at depth where the hand auger is used (due to the lower sampling volume). We have attempted to compensate for this by proposing laboratory analysis of 500mL samples for asbestos to complement the field screening.
Decontami- nation and Sample Preservation	Sampling personnel will use disposable nitrile gloves during sampling activities. Re-usable sampling equipment will be decontaminated using a Decon and potable water solution (with rags and scrubbing brush), followed by a rinse with potable water.
	Soil samples will be preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples will be stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

5.3 Laboratory Analysis and Analytical Rationale

Samples are to be analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. The laboratory details are provided in the table below:

Table 5-2: Laboratory Details

Samples	Laboratory
All primary samples and field QA/QC samples (including intra-laboratory duplicates, trip blanks and trip spikes)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)

The rational for the laboratory analysis schedule is defined in DQOs outlined in Section 5.1. An allowance has been made for the following analysis:

- Approximately 37 selected soil samples for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; BTEX; OCPs; OPPs; and PCBs;
- Approximately 10 selected soil samples (500mL) for asbestos using laboratory quantification (gravimetric) methods;
- Approximately five selected soil samples from the locations in the vicinity of BH26 for TRH/BTEX;
- Approximately five selected representative soil samples for: pH; CEC; and clay content (%); and
- Targeted toxicity characteristic leachate procedure (TCLP) analysis for waste classification purposes.

Should any indicators of potential contamination or elevated concentrations of contaminants be identified, additional analysis of the deeper fill/topsoil or natural soils will be undertaken subject to budgetary constraints.

5.4 Reporting Requirements

A DSI report is to be prepared presenting the results of the investigation, generally in accordance with the NSW EPA Consultants Reporting on Contaminated Land, Contaminated Land Guidelines (2020)¹².

¹² NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

6 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the PSI; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

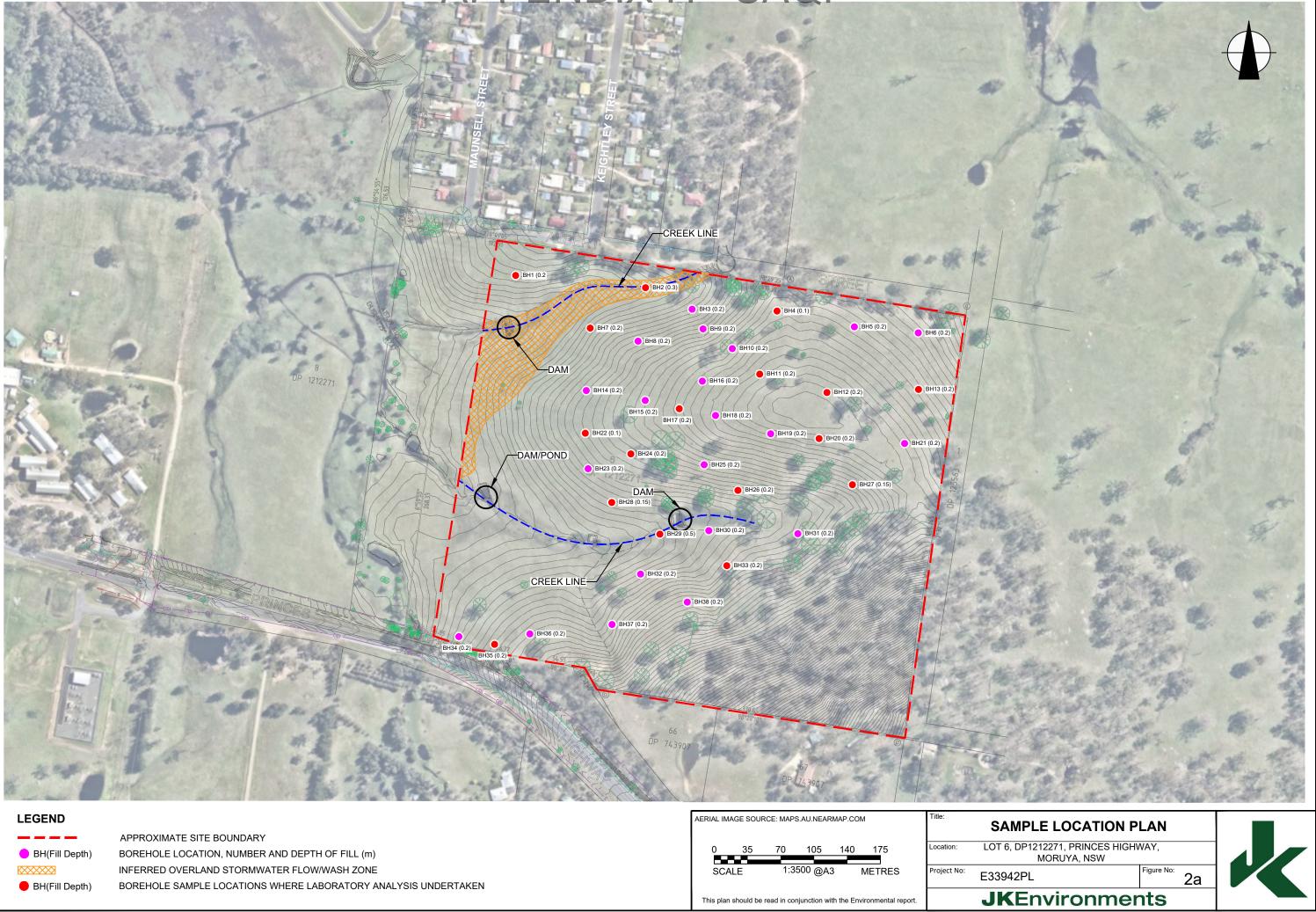
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

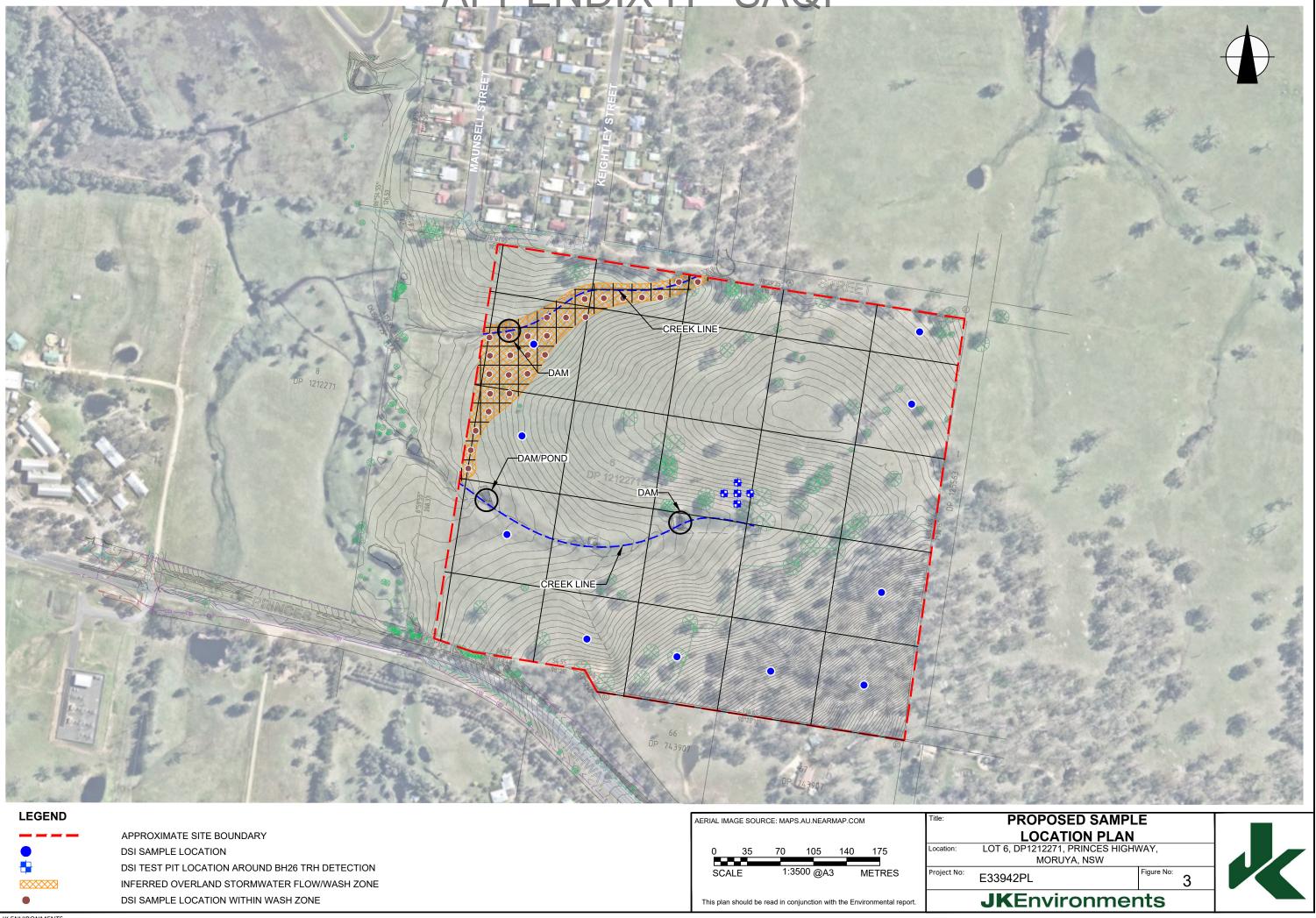
Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Figures



JKEnvironments


ן נ	
2	This plan should be read in conjunction with the Environmental report.

© JK ENVIRONMENTS

LEGEND		AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM	SAN
	APPROXIMATE SITE BOUNDARY		
😑 BH(Fill Depth)	BOREHOLE LOCATION, NUMBER AND DEPTH OF FILL (m)	0 35 70 105 140 175	LOT 6,
	INFERRED OVERLAND STORMWATER FLOW/WASH ZONE	SCALE 1:3500 @A3 METRES Project No	^{o:} E33942
BH(Fill Depth)	BOREHOLE SAMPLE LOCATIONS WHERE LABORATORY ANALYSIS UNDERTAKEN		
,		This plan should be read in conjunction with the Environmental report.	JK

EGEND		AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM	Title:	P
	APPROXIMATE SITE BOUNDARY			
	DSI SAMPLE LOCATION	0 35 70 105 140 175	Location:	LOT 6,
	DSI TEST PIT LOCATION AROUND BH26 TRH DETECTION	SCALE 1:3500 @A3 METRES	Project No:	E 0004
~~~~~	INFERRED OVERLAND STORMWATER FLOW/WASH ZONE		-	E3394
	DSI SAMPLE LOCATION WITHIN WASH ZONE	This plan should be read in conjunction with the Environmental report.		JK
DONINAENITE				



### **Appendix B: Proposed Development Plans**

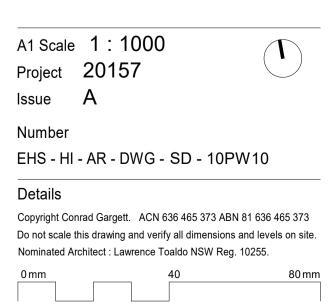






Revision REV DESCRIPTION A 80% Schematic Design

DATE INT. 26.11.21 **EA** 


Client



Project Eurobodalla Health Service

Drawing MASTERPLAN - OVERALL PROPOSED - DAY 1







### **Appendix C: Report Explanatory Notes**





### QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)¹³ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)¹⁴. The NEPM (2013) is consistent with these documents.

### A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).* 

### B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

### C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

### D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

### E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;



 ¹³ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ¹⁴ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide



- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

### F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

### G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

### H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

### (Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

### I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

### J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$ 





### **Appendix D: Guidelines and Reference Documents**





Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

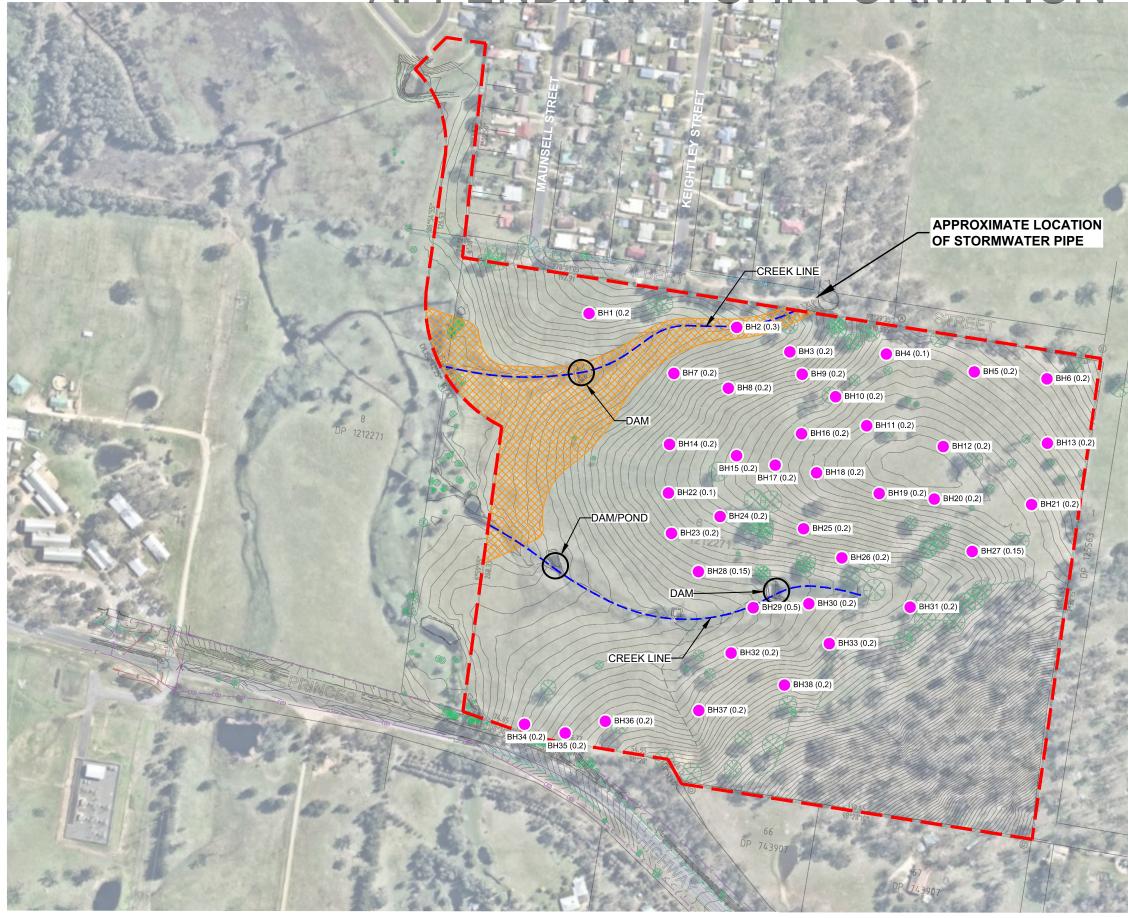
NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

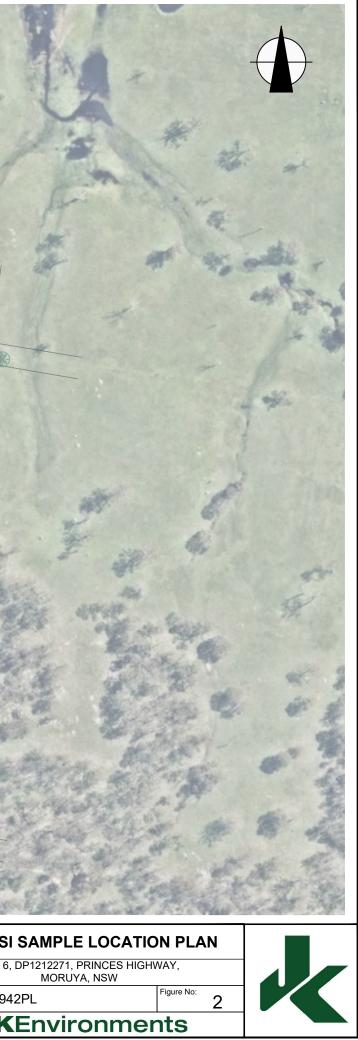
National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)


State Environmental Planning Policy No.55 – Remediation of Land 1998 (NSW)






### **Appendix I: JKE PSI Information**





LEGEND		AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM	Title:	PSI
	APPROXIMATE SITE BOUNDARY	0 35 70 105 140 175	Location:	LOT 6, D
BH(Fill Depth)	BOREHOLE LOCATION, NUMBER AND DEPTH OF TOPSOIL (m) INFERRED OVERLAND STORMWATER FLOW/WASH ZONE	SCALE 1:3500 @A3 METRES	Project No:	E33942
		This plan should be read in conjunction with the Environmental report.		JK



APPENDIX I - PSI INFORMATION Preliminary Site Investigation (Instrusive Investigation)

Lot 6 DP1212271, Princes Highway, Moruya, NSW E33942PLrpt2

#### ABBREVIATIONS AND EXPLANATIONS

#### Abbreviations used in the Tables:

ABC:	Ambient Background Concentration	PCBs:	Polychlorinated Biphenyls
ACM:	Asbestos Containing Material	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ADWG:	AustralianDrinking Water Guidelines	pH _{KCI} :	pH of filtered 1:20, 1M KCL extract, shaken overnight
AF:	Asbestos Fines	pH _{ox} :	pH of filtered 1:20 1M KCl after peroxide digestion
ANZG	Australian and New Zealand Guidelines	PQL:	Practical Quantitation Limit
B(a)P:	Benzo(a)pyrene	RS:	Rinsate Sample
CEC:	Cation Exchange Capacity	RSL:	Regional Screening Levels
CRC:	Cooperative Research Centre	RSW:	Restricted Solid Waste
CT:	Contaminant Threshold	SAC:	Site Assessment Criteria
EILs:	Ecological Investigation Levels	SCC:	Specific Contaminant Concentration
ESLs:	Ecological Screening Levels	S _{Cr} :	Chromium reducible sulfur
FA:	Fibrous Asbestos	S _{POS} :	Peroxide oxidisable Sulfur
GIL:	Groundwater Investigation Levels	SSA:	Site Specific Assessment
GSW:	General Solid Waste	SSHSLs	: Site Specific Health Screening Levels
HILs:	Health Investigation Levels	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
HSLs:	Health Screening Levels	TB:	Trip Blank
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	TCA:	1,1,1 Trichloroethane (methyl chloroform)
kg/L	kilograms per litre	TCE:	Trichloroethylene (Trichloroethene)
NA:	Not Analysed	TCLP:	Toxicity Characteristics Leaching Procedure
NC:	Not Calculated	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NEPM:	National Environmental Protection Measure	TS:	Trip Spike
NHMRC:	National Health and Medical Research Council	TRH:	Total Recoverable Hydrocarbons
NL:	Not Limiting	TSA:	Total Sulfide Acidity (TPA-TAA)
NSL:	No Set Limit	UCL:	Upper Level Confidence Limit on Mean Value
OCP:	Organochlorine Pesticides	USEPA	United States Environmental Protection Agency
OPP:	Organophosphorus Pesticides	VOCC:	Volatile Organic Chlorinated Compounds
PAHs:	Polycyclic Aromatic Hydrocarbons	WHO:	World Health Organisation
%w/w:	weight per weight		
ppm:	Parts per million		

**Table Specific Explanations:** 

#### HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

### EIL/ESL Table:

Site specific ABC values for specific metals have been adopted.

### Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

### QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

**JKEnvironments** 

#### TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						HEAVY	METALS					PAHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		TOTAL	
All data in mg/	'kg unless state	ed otherwise	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	Carcinogenic	HCB	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD	Heptachlor	Chlorpyrifos	TOTAL PCBs	Phenols	ASBESTOS FIBRES
											PAHs	PAHs				Dieldrin		& DDE					
QL - Envirolat	Services		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	5	100
ite Assessmer	nt Criteria (SAC	)	100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	3000	Detected/Not Detecte
Sample Reference	Sample Depth	Sample Description																					
H1	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	5	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H2	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	<1	5	<0.1	1	4	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H4	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	4	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H4 - [LAB_DU	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	NA
H7	0-0.1	Fill: Silty sandy clay	<4	<0.4	3	1	4	<0.1	1	11	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H11	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H12	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H13	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
117	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	1	3	<0.1	<1	7	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H20	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	<1	3	<0.1	<1	7	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H22	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	4	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H24	0-0.1	Fill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H26	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	<1	5	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H26	0.2-0.3	Silty sandy clay	<4	<0.4	3	<1	3	<0.1	1	7	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	NA
H27	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	1	7	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H28	0-0.1	Fill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	3	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H29	0-0.1	Fill: Silty sandy clay	<4	<0.4	7	3	11	<0.1	5	11	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H29	0.2-0.3	Fill: Silty sandy clay	<4	<0.4	8	1	14	<0.1	5	11	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	NA
H29 - [LAB_D	0.2-0.3	Fill: Silty sandy clay	<4	<0.4	7	1	13	<0.1	4	9	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	NA
H33	0-0.1	Fill: Silty sandy clay	<4	<0.4	3	<1	5	<0.1	1	4	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
H35	0-0.1	Fill: Silty sandy clay	<4	<0.4	2	1	5	<0.1	<1	5	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	Not Detected
DUP1	-	Fill: Silty sandy clay	<4	<0.4	2	2	4	<0.1	1	5	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	NA
DUP2	-	Fill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	<1	2	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	NA	NA
OUP2 (lab rep	-	Fill: Silty sandy clay	NA	NA	NA	NA	NA	NA	NA	NA	< 0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	<0.1	<0.3	NA	NA
Total Numbe	r of Samples		23	23	23	23	23	23	23	23	24	24	23	23	23	23	23	23	23	24	24	19	17
Maximum Va	lue		<pql< td=""><td><pql< td=""><td>8</td><td>3</td><td>14</td><td><pql< td=""><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>8</td><td>3</td><td>14</td><td><pql< td=""><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	8	3	14	<pql< td=""><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	5	11	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected



#### TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs

All data in mg/kg unless stated otherwise	
-------------------------------------------	--

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
QL - Envirolab	Services				25	50	0.2	0.5	1	1	1	ppm
IEPM 2013 HSL	Land Use Cat	egory					HSL-A/B: LC	W/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH2	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH4	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH4 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH7	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH11	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH12	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH13	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH17	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH20	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH22	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH24	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH26	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH26	0.2-0.3	Silty sandy clay	0m to <1m	Sand	<25	75	<0.2	<0.5	<1	<3	<1	2
BH27	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH28	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH29	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH29	0.2-0.3	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH29 - [LAB_DUP]	0.2-0.3	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH33	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH35	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
SDUP1	-	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
SDUP2	-	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP2 (lab replicate)	-	Fill: Silty sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
Total Number	of Samplar				24	24	24	24	24	24	24	21
Maximum Va					<pql< td=""><td>75</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>21</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	75	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>21</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>21</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>21</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>21</td></pql<></td></pql<>	<pql< td=""><td>21</td></pql<>	21
oncentration a oncentration a he guideline co	above the SAC		VALUE Bold					. 42				

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH1	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH11	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH12	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH13	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH17	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH20	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH22	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH24	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH26	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH26	0.2-0.3	Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH27	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH28	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH29	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH29	0.2-0.3	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH29 - [LAB_DUP]	0.2-0.3	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH33	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH35	0-0.1	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1	-	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2	-	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2 (lab replicate)	-	Fill: Silty sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3

PPENDIX I – F Preliminary Site Investigation (Instrusive Investigation) Lot 6 DP1212271, Princes Highway, Moruya, NSW E33942PLrpt2



### TABLE S3

SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS

All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
			BTEX	napthalene	×C ₁₆ -C ₃₄ (13)	
QL - Envirolat	o Services		25	50	100	100
IEPM 2013 La	nd Use Category		RE	SIDENTIAL, PARKLAND	& PUBLIC OPEN SP	ACE
Sample Reference	Sample Depth	Soil Texture				
BH1	0-0.1	Coarse	<25	<50	<100	<100
BH2	0-0.1	Coarse	<25	<50	<100	<100
BH4	0-0.1	Coarse	<25	<50	<100	<100
BH4 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100
BH7	0-0.1	Coarse	<25	<50	<100	<100
BH11	0-0.1	Coarse	<25	<50	<100	<100
BH12	0-0.1	Coarse	<25	<50	<100	<100
BH13	0-0.1	Coarse	<25	<50	<100	<100
BH17	0-0.1	Coarse	<25	<50	<100	<100
BH20	0-0.1	Coarse	<25	<50	<100	<100
BH22	0-0.1	Coarse	<25	<50	<100	<100
BH24	0-0.1	Coarse	<25	<50	<100	<100
BH26	0-0.1	Coarse	<25	<50	<100	<100
BH26	0.2-0.3	Coarse	<25	75	100	<100
BH27	0-0.1	Coarse	<25	<50	<100	<100
BH28	0-0.1	Coarse	<25	<50	<100	<100
BH29	0-0.1	Coarse	<25	<50	<100	<100
BH29	0.2-0.3	Coarse	<25	<50	<100	<100
BH29 - [LAB_DUP]	0.2-0.3	Coarse	<25	<50	<100	<100
BH33	0-0.1	Coarse	<25	<50	<100	<100
BH35	0-0.1	Coarse	<25	<50	<100	<100
SDUP1	-	Coarse	<25	<50	<100	<100
SDUP2	-	Coarse	<25	<50	<100	<100
SDUP2 (lab replicate)	-	Coarse	<25	<50	<100	<100
otal Number	of Samples		24	24	24	24
	-					
Maximum Val			<pql< td=""><td>75</td><td>100</td><td><pqi< td=""></pqi<></td></pql<>	75	100	<pqi< td=""></pqi<>
Loncentration	above the SAC		VALUE			

APPENDIX I - PSI INFORMATION Preliminary Site Investigation (Instrusive Investigation) Lot 6 DP1212271, Princes Highway, Moruya, NSW E33942PLrpt2

### JKEnvironments

#### TABLE S4

SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte		C6-C10	>C10-C16	>C16-C34	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
QL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contact	t Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
iite Use				RESIDE	NTIAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL C	ONTACT			
Sample Reference	Sample Depth										
BH1	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH2	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH4	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH4 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH7	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH11	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH12	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH13	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH17	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH20	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH22	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH24	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH26	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH26	0.2-0.3	<25	75	100	<100	<0.2	<0.5	<1	<3	<1	2
BH27	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH28	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH29	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH29	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH29 - [LAB_DUP]	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH33	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH35	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
SDUP1	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
SDUP2	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
SDUP2 (lab replicate)	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
Total Number of Sample	es	24	24	24	24	24	24	24	24	24	21
Maximum Value		<pql< td=""><td>75</td><td>100</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	75	100	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2</td></pql<></td></pql<>	<pql< td=""><td>2</td></pql<>	2

## ¢ J

### TABLE S5

ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

					LABORATOR	Y DATA						
Date Sampled	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	FA and A Estimatio %(w/w)
SAC											0.01	0.001
13/04/2021	266931	BH1	0-0.1	508.33	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
13/04/2021	266931	BH2	0-0.1	728.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
20/04/2021	267510	BH4	0-0.1	511.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
21/04/2021	267510	BH7	0-0.1	389.31	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
14/04/2021	266931	BH11	0-0.1	705.26	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
15/04/2021	267510	BH12	0-0.1	586.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
15/04/2021	266931	BH13	0-0.1	677.48	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
14/04/2021	266931	BH17	0-0.1	630.67	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
17/04/2021	267510	BH20	0-0.1	529.53	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
15/04/2021	266931	BH22	0-0.1	631.16	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
16/04/2021	267510	BH24	0-0.1	628.52	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
16/04/2021	267510	BH26	0-0.1	517.47	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
15/04/2021	267510	BH27	0-0.1	561.42	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
19/04/2021	267510	BH28	0-0.1	501.22	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
19/04/2021	267510	BH29	0-0.1	240.78	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected: Synthetic mineral fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001
20/04/2021	267510	BH33	0-0.1	578.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.001
19/04/2021	267510	BH35	0-0.1	575.17	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.001



#### TABLE S6

### SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs

All data in mg/kg unless stated otherwise

Land Use Category												URBAN RESID	ENTIAL AND PUBL	IC OPEN SPAC	ΈE								
									AGED HEAVY	Y METALS-EILS			EIL	.s					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Cor	ncentration (A	BC)		-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH1	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	5	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH2	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	<1	5	1	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH4	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	3	<1	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH4 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	3	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH7	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	3	1	4	1	11	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH11	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	3	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH12	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	3	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH13	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	3	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH17	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	1	3	<1	7	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH20	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	<1	3	<1	7	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH22	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	4	<1	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH24	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	1	<1	3	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH26	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	<1	4	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH26	0.2-0.3	Silty sandy clay	Coarse	5.9	3.05	25	<4	3	<1	3	1	7	<1	<0.1	<25	75	100	<100	<0.2	<0.5	<1	<3	<0.05
BH27	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	<1	4	1	7	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH28	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	<1	<1	3	<1	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH29	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	7	3	11	5	11	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH29	0.2-0.3	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	8	1	14	5	11	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH29 - [LAB_DUP]	0.2-0.3	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	7	1	13	4	9	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH33	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	3	<1	5	1	4	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH35	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	1	5	<1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
SDUP1	-	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	2	4	1	5	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
SDUP2	-	Fill: Silty sandy clay	Coarse	5.9	3.05	25	<4	2	<1	4	<1	2	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
SDUP2 (lab replicate)	-	Fill: Silty sandy clay	Coarse	5.9	3.05	25	NA	NA	NA	NA	NA	NA	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
Total Number of Sample	es			24	24	24	23	23	23	23	23	23	24	23	24	24	24	24	24	24	24	24	24
Maximum Value				5.9	3.05	25	<pql< td=""><td>8</td><td>3</td><td>14</td><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>75</td><td>100</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	8	3	14	5	11	<pql< td=""><td><pql< td=""><td><pql< td=""><td>75</td><td>100</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>75</td><td>100</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>75</td><td>100</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	75	100	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>

Concentration above the PQL Bold
The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

Sample Reference	Sample Depth	Sample Description	Soil Texture	pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH1	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH2	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH4	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH4 - [LAB_DUP]	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH7	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH11	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH12	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH13	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH17	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH20	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH22	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH24	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH26	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH26	0.2-0.3	Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH27	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH28	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH29	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH29	0.2-0.3	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH29 - [LAB_DUP]	0.2-0.3	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH33	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
BH35	0-0.1	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
SDUP1	-	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
SDUP2	-	Fill: Silty sandy clay	Coarse	5.9	3.05	25	100	410	120	1300	35	350	170	180	180	120	300	2800	50	85	70	105	20
SDUP2 (lab replicate)	-	Fill: Silty sandy clay	Coarse	5.9	3.05	25							170		180	120	300	2800	50	85	70	105	20

EIL AND ESL ASSESSMENT CRITERIA



TABLE S7

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

- Envirolab Services		Arsenic	Cadmium	Chromium	Copper	Land							/ -	PESTICIDES													
					coppe.	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans	Chloropyrifos	Total Moderately Harmful	Total Scheduled	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total Phenols	ASBESTOS FIBR
		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	5	100
eral Solid Waste CT1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	288	-
neral Solid Waste SCC1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	518	-
tricted Solid Waste CT2		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	1,152	-
tricted Solid Waste SCC2		2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	2,073	-
Sample Sample Sai eference Depth	ample Description																										
0-0.1 Fil	ill: Silty sandy clay	<4	<0.4	1	<1	5	<0.1	<1	5	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
2 0-0.1 Fil	ill: Silty sandy clay	<4	<0.4	2	<1	5	<0.1	1	4	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	4	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	5	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	NA
	ill: Silty sandy clay	<4	<0.4	3	1	4	<0.1	1	11	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	3	< 0.05	<0.05 <0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50 <50	<0.2	<0.5	<1	<3 <3	<5 <5	Not Detected
	ill: Silty sandy clay ill: Silty sandy clay	<4 <4	<0.4	1	<1 <1	3	<0.1	<1 <1	3	<0.05 <0.05	<0.05	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3	<5	Not Detected Not Detected
	ill: Silty sandy clay	<4	<0.4	1	1	3	<0.1	<1	7	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	2	<1	3	<0.1	<1	7	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	1	<1	4	<0.1	<1	4	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	1	<1	3	<0.1	<1	5	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
26 0-0.1 Fil	ill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	<1	5	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
0.2-0.3	Silty sandy clay	<4	<0.4	3	<1	3	<0.1	1	7	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	110	<100	110	<0.2	<0.5	<1	<3	<5	NA
	ill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	1	7	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	<1	<1	3	<0.1	<1	3	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	7	3	11	<0.1	5	11	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	8	1	14 13	<0.1	5	11 9	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	NA
	ill: Silty sandy clay ill: Silty sandy clay	<4 <4	<0.4 <0.4	3	1 <1	13	<0.1	4	4	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	<5 <5	NA Not Detected
	ill: Silty sandy clay	<4	<0.4	2	1	5	<0.1	<1	5	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	Not Detected
	ill: Silty sandy clay	<4	<0.4	2	2	4	<0.1	1	5	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	<5	NA
	ill: Silty sandy clay	<4	<0.4	2	<1	4	<0.1	<1	2	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.2	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA	NA
JP2 (lab rep - Fil	ill: Silty sandy clay	NA	NA	NA	NA	NA	NA	NA	NA	<0.05	<0.05	NA	<0.1	<0.1	<0.1	<0.3	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA	NA
otal Number of Samples		23	23	23	23	23	23	23	23	24	24	23	24	24	24	24	24	24	24	24	24	24	24	24	24	19	17
aximum Value		<pql< td=""><td><pql< td=""><td>8</td><td>3</td><td>14</td><td><pql< td=""><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>8</td><td>3</td><td>14</td><td><pql< td=""><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	8	3	14	<pql< td=""><td>5</td><td>11</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	5	11	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>110</td><td><pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	110	<pql< td=""><td>110</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	110	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected



#### Preliminary Site Investigation (Instrusive Investigation) Lot 6 DP1212271, Princes Highway, Moruya, NSW E33942PLrpt2

TABLE Q1 SOIL QA/Q	C SUMMARY																																																								
		TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenapn-thene Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Benzo(b, j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g, n, i)perylene HCB	alpha- BHC	gamma- BHC	beta- BHC	Heptachlor	delta- BHC	Aldrin	Heptachlor Epoxide Gamma- Chlordane	alpha- chlordane	Endosulfan I	pp- DDE	Dieldrin	Endrin	pp- DDD	Endosulfan II pp- DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthion	Bromophos-ethyl Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Total Phenols Arsenic	Cadmium	Chromium	Copper	Lead	Mercury Nickel	Zinc
	PQL Envirolab SYD	25	50	100 1	100 0.	2 0.5	5 1	2	1	0.1	0.1 0.	.1 0.1	1 0.1	0.1	0.1	0.1 0	0.1 0.	1 0.2	0.05	0.1	0.1	.1 0.:	1 0.1	0.1	0.1	0.1	0.1 0	0.1 0.	0.1 0.1	1 0.1	0.1	0.1	0.1	0.1 0	0.1 0	0.1 0.1	0.1	0.1	0.1	0.1 0	.1 0.1	0.1	0.1	0.1 0	0.1 0.1	1 0.1	0.1	0.1	0.1	0.1	5 4	0.4	1	1	1 0	0.1 1	1
	PQL Envirolab VIC	25			100 0.	2 0.5	5 1.0	2.0	1.0	0.1	0.1 0.	.1 0.1	1 0.1	0.1	0.1	0.1 0	0.1 0.	1 0.2	0.1	0.1	0.1	.1 0.:	1 0.1	0.1	0.1	0.1	0.1 0	0.1 0	0.1 0.1	1 0.1	0.1	0.1	0.1	0.1 0	0.1 0	0.1 0.1	0.1	0.1	0.1	0.1 0	.1 0.1	0.1	0.1	0.1 0	0.1 0.1	1 0.1	0.1	0.1	0.1	0.1	- 4.				1.0 0.	.1 1.0	1.0
Intra	BH12 0-0.1	<25	<50	<100 <	<100 <0	0.2 <0.	5 <1	<2	<1	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	< 0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.2	2 < 0.05	<0.1	<0.1 <	0.1 <0.	.1 <0.3	1 <0.1	<0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.	.1 <0.1	< 0.1	< 0.1	<0.1	<0.1 <	<0.1 <	0.1 <0.1	1 <0.1	< 0.1	<0.1	<0.1 <	0.1 <0.1	< 0.1	< 0.1	<0.1 <	0.1 <0.	.1 <0.1	1 <0.1	< 0.1	< 0.1	<0.1	<5 <	4 < 0.4	4 1	<1	3 <	:0.1 <1	5
	SDUP1 -	<25		<100 <	<100 <0	0.2 <0.	5 <1	<2	<1	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.2	2 < 0.05	< 0.1	<0.1 <	0.1 <0	.1 <0.1	1 < 0.1	< 0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.	.1 <0.1	< 0.1	< 0.1	<0.1	<0.1 <	<0.1 <	0.1 <0.1	1 <0.1	<0.1	< 0.1	<0.1 <	0.1 <0.1	< 0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	< 0.1		<0.1	<5 <	4 < 0.4	4 2	2	4 <	0.1 1	5
	MEAN		nc	nc	nc n	ic no	nc	nc	nc	nc	nc n	nc nc	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc r	nc no	c nc	nc	nc	nc	nc	nc r	nc nc	nc	nc	nc	nc	nc nc	nc	nc	nc	nc ni	c nc	nc	nc	nc	nc	nc n	c nc	1.5	1.25	3.5 r	nc 0.75	5
	RPD %		nc	nc	nc n	ic no	: nc	nc	nc	nc	nc r	nc nc	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc r	nc no	c nc	nc	nc	nc	nc	nc r	nc nc	nc	nc	nc	nc	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc n	c nc			29% r		
																																														-	-					-	_			-	
Inter	BH7 0-0.1	<25	<50	<100 <	<100 <0	).2 <0.	5 <1	<2	<1	<0.1	<0.1 <0	0.1 <0.1	.1 <0.1	< 0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.2	2 <0.05	< 0.1	<0.1 <	0.1 <0.	.1 <0.1	1 <0.1	< 0.1	<0.1	< 0.1 <	<0.1 <0	0.1 <0.	.1 <0.1	< 0.1	< 0.1	<0.1	<0.1 <	<0.1 <	0.1 <0.1	1 <0.1	< 0.1	<0.1	< 0.1 <	0.1 <0.1	< 0.1	<0.1	<0.1 <	0.1 <0.	.1 <0.1	1 < 0.1	<0.1	< 0.1	<0.1	<5 <	4 < 0.4	4 3	1	4 <	0.1 1	11
laboratory	SDUP2 -	<25	<50	<100 <	<100 <0	0.2 <0.	5 <1	<2	<1	<0.1	<0.1 <0	0.1 <0.	1 <0.1	<0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.2	2 <0.05	< 0.1	<0.1 <	0.1 <0	.1 <0.1	1 <0.1	< 0.1	<0.1	<0.1 <	<0.1 <0	0.1 <0.	.1 <0.1	< 0.1	< 0.1	<0.1	<0.1 <	<0.1 <	0.1 <0.1	1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	< 0.1	<0.1 <	0.1 <0	.1 <0.1	i <0.1	<0.1	< 0.1	<0.2	- <	4 <0.4	4 2	<1	4 <	:0.1 <1	2
	MEAN	nc	nc	nc	nc n	ic no	nc nc	nc	nc	nc	nc r	nc nc	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc r	nc no	c nc	nc	nc	nc	nc	nc r	nc nc	nc	nc	nc	nc	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc n	c nc	2.5	0.75	4 /	nc 0.75	6.5
	RPD %	nc	nc	nc	nc n	ic no	nc nc	nc	nc	nc	nc r	nc nc	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc r	nc no	c nc	nc	nc	nc	nc	nc r	nc nc	nc	nc	nc	nc	nc nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc n	c nc	40%	67%	0% r	nc 67%	138%
																																														-							_		-	_	
Field	TBS1 -	NA	NA	NA	NA <0	0.2 <0.	.5 <1	<2	<1	NA	NA N	IA NA	A NA	NA	NA	NA N	NA N	A NA	NA	NA	NA	NA NA	A NA	NA	NA	NA	NA N	NA N	NA NA	A NA	NA	NA	NA	NA	NA N	NA NA	NA NA	NA	NA	NA I	NA NA	NA	NA	NA I	NA NA	A NA	NA	NA	NA	NA I	NA N	A NA	. NA	NA	1 AN	NA NA	NA
Blank	13/04/21																																																								
Field	TBS2 -	NA	NA	NA	NA <0	0.2 <0.	.5 <1	<2	<1	NA	NA N	IA NA	A NA	NA	NA	NA N	NA N	A NA	NA	NA	NA	NA NA	A NA	NA	NA	NA	NA N	NA N	NA NA	A NA	NA	NA	NA	NA	NA N	NA NA	NA NA	NA	NA	NA I	NA NA	NA	NA	NA I	NA NA	A NA	NA NA	NA	NA	NA I	NA N.	A NA	NA NA	NA	NA N	NA NA	NA
Blank	22/04/21																																																								
Trip	TSS1	-	-	-	- 83	8% 855	% 106%	106%	106%	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-		-	-	-		-	-	-	-	-		-	-	-	-		-
Spike	13/04/21																																																								
																																															-										
	TSS2		-		- 92	2% 919	% 91%	91%	92%	-	-		-	-	-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	-			-	-	-		-	-	-			-	-	-	-		-	-		-		-
Spike	22/04/21																																																								
	Result outside of QA/Q	(C accepta	nce crite	ria																																																					

## **BOREHOLE LOG**

Borehole No. BH1 1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~7.7 m Date: 13/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests E DESCRIPTION Remarks Depth ( DB U50 Ч DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w<PI plasticity, brown, trace of root fibres CI St RESIDUAL w~PL 120 Silty sandy CLAY: medium plasticity, 110 brown and orange brown, fine to medium grained sand, trace of fine HP ON DISTURBED WMP XW D SAMPLE grained quartz gravel and root fibres N = 437 MORUYA TONALITE 9,20,23 Extremely Weathered granite: silty 1 i clayey SAND, fine to coarse grained, brown and light grey, trace of fine 1 i grained quartz gravel. DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 6 2 1 5 3 N=SPT Datgel Lab and In Situ Tool -10/ 50mm REFUSAL 4 10.01.00.01 21/05/2021 11:08 N=SPT <<DrawingFile>> 5/ 20mm 3 REFUSAL 5 33942LT MORUYA.GPJ GROUNDWATER MONITORING WELL INSTALLED TO 5.8m. CLASS 18 MACHINE 2 MASTER SLOTTED 50mm DIA. PVC 1, Ŧ STANDPIPE 2.8m TO 5.8m. CASING 0.1m TO JK AUGERHOLE END OF BOREHOLE AT 6.00 m 2.8m. 2mm SAND BACKFILL 3m TO 5.8m. BENTONITE SEAL 2m TO 3m. BACKFILLED WITH 5 CUTTINGS TO SURFACE K 9.02.4 LIB.GLB COMPLETED WITH A 1 CONCRETED GATIC COVER COPYRIGHT

## **BOREHOLE LOG**

Borehole No. BH2

1/1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~7.5 m Date: 13/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( DB DB DB R DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w<PI plasticity, brown, fine to coarse grained sand, trace of root fibres. MI w<PI VSt RESIDUAL Clayey sandy SILT low plasticity, brown 7 and orange brown, fine to coarse grained sand, trace of fine grained N = 55,3,2 quartz gravel and root fibres. Extremely Weathered granite: silty xw D MORUYA TONALITE 6 N=SPT clayey SAND, fine to coarse grained, brown and orange brown, trace of fine to 10/ 50mm REFUSAL coarse grained quartz gravel. DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2 5 as above, but light grey and brown. N=SPT 15/ 100mm REFUSAL 3 and In Situ Tool -GRANITE: medium to coarse grained, DW. VL - L LOW 'TC' BIT RESISTANCE light grey and brown. 4 Datgel Lab 10.01.00.01 21/05/2021 11:08 N > 7 15,7/ 50mm 3 RÉFUSAL H - VH VERY HIGH RESISTANCE GRANITE: medium to coarse grained, vindFile>> light grey and dark grey. 'TC' BIT REFUSAL END OF BOREHOLE AT 4.70 m <<Drail 5 MORUYA.GPJ 33942LT 2 **MASTER** 6 AUGERHOLE 5 G 1 B.GLB K 9.02.4

COPYRIGHT

## **BOREHOLE LOG**

Borehole No. BH3

1/3

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~10.8 m Date: 21/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests E DESCRIPTION Remarks Depth ( DB U50 R DRY ON COMPLETION OF AUGERING TOPSOIL: Silty sandy clay, low GRASS COVER w>PI plasticity, brown, fine to coarse grained CI VSt - Hd RESIDUAL w<PL sand, trace of root fibres. Silty sandy CLAY: medium plasticity, (0.75m) HP ON BASE OF brown and orange brown, fine to coarse U50 = 530 kPagrained sand, trace of fine grained quartz gravel and root fibres 210 250 10 N > 27 2,7,20/ 50mm MORUYA TONALITE Extremely Weathered granite: silty XW D 1 REFUSAL clayey SAND, fine to coarse grained, 1 VERY LOW 'TC' BIT brown and orange brown, trace of fine RESISTANCE grained guartz gravel. N = 32DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 12.14.18 9 2 i. N=SPT 8 12/ 100mm REFUSAL 3 and In Situ Tool -Datgel Lab 7 10.01.00.01 4 21/05/2021 11:08 N=SPT 6/ 50mm REFUSAL 6 <<Drail 5 MORUYA.GPJ 33942LT MASTER N=SPT 5 7/50mm REFUSAL 6 JK AUGERHOLE 5 -B.GLB 4 K 9.02.4 COPYRIGHT

### **BOREHOLE LOG**

Borehole No. BH3

2/3

	Pı	lient roje	ct:		OSE	DE	UROB	ODALL	A HEALTH SERVICE	A.(			
_			ion:		DP1	212	271, PI		S HIGHWAY, MORUYA, NS			<b>.</b>	10.0
			21/4	33942LT 4/21				we	thod: SPIRAL AUGER		L. Sur atum:		~10.8 m
				e: JK308				Log	gged/Checked By: W.S./A.B.				
Croundwater	Record	SAM N20	PLES 80	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
				N=SPT 5/0mm REFUSAL				-	Extremely Weathered granite: silty clayey SAND, fine to coarse grained, brown and orange brown, trace of fine grained quartz gravel. <i>(continued)</i>	XW	D		-
1 L1. JN 3.01.0 Z010-00-Z0					2	9			GRANITE: medium to coarse grained, light brown, light grey and dark grey.	DW	VL		LOW RESISTANCE
					- 1- -	10-			REFER TO CORED BOREHOLE LOG				- - - - - - - -
1/03/2021 11:00 10:01:00:01 Datget Lab and					- 0  - -	· · 11 ·	-						-
					-1 -1 -	12-	-						-
THE FOR AN ADDEMNORE - IMPOLEN 30					-2  	13-							
JN 9.02.4 LID.L					-3-		-						-

COPYRIGHT

### **CORED BOREHOLE LOG**

Borehole No. BH3

		ien oje	nt: ect:			H INFRASTRUCTURE DSED EUROBODALLA HEAL	TH S	ERVI	CE							
	Lc	oca	tion	:	LOT 6	DP1212271, PRINCES HIGH	WAY,	MOF	งบ	YA	, NS	SW	'			
	Jo	b l	No.:	339	42LT	Core Size:	NML	С						F	<b>R.L. Surface:</b> ~10.8 m	
			: 21/			Inclination:		TICA	L						Datum: AHD	
	Pla	ant	t Typ	be:	JK308	Bearing: N	/A	1				_			Logged/Checked By: W.S./A.B.	1
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	ST	REN IND I _s (5		I SI	PAC (mn	n)	Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation
			-	-	-	START CORING AT 9.30m									-	
F			-	-		NO CORE 0.35m				+ +					-	
			- 1 -	- - - 10-		GRANITE: medium to coarse grained, light grey, dark grey and brown.	HW	L - M		.10					- (9.70m) XWS, 0°, 150 mm.t - (9.87m) J x 2, 70°, P, R, Cn - (9.95m) J, 65°, P, R, Cn - (10.07m) J, 10°, P, R, Cn	
0 2018-03-20	RETURN		-	-		as above, but light grey and dark grey.	FR	VH			•6				(10.18m) J, 25°, P, R, Cn (10.47m) J, 20°, P, R, Cn (10.52m) J, 20°, P, R, Cn (10.65m) J, 30°, P, R, Cn	MORUYA TONALITE
rj: JK 9.01.			0-	- - 11-	+ + + + + + + + +	as above, but dark grey.						.2	i		-	MORL
1.02.4 2019-05-31 P			-	-		GRANITE: medium to coarse grained, light grey diorite and dark grey.					5	4				
LBIGIB Log JK CORED BOREHOLE - MASTER 33942LT MORUYA.GPJ < <drawngries> 27/05/2021 11:08 10/01/00/01 Dage Labandin Siu Tool - DGD   LB: JK</drawngries>			-1 -1 -2 -2 -3           			END OF BOREHOLE AT 11.50 m										
	<u>יחר</u>		-5 – GHT	-											F SIDERED TO BE DRILLING AND HANDLING BR	

## **BOREHOLE LOG**

Borehole No. BH4

С	lient	:	HEALT		NFR	ASTRU	ICTUF	RE				
	rojeo							A HEALTH SERVICE				
L	ocat	ion:	LOT 6	DP1	212	271, PI	RINCE	S HIGHWAY, MORUYA, NSV	N			
J	ob N	o.: :	33942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~17.2 m
D	ate:	20/4	/21						Da	atum:	AHD	
P	lant	Туре	e: JK308				Log	gged/Checked By: W.S./A.B.				
-						D	E				ier (Pa)	
ndwate rd	SAMF	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	ure ition/ hering	Strength/ Rel Density	tromet ings (I	Remarks
Groui Reco	SAMF	DB	Field	RL (n	Dept	Grap	Unifie Class		Moisture Condition/ Weathering	Stren Rel D	Hand Penetrometer Readings (kPa)	
DRY ON COMPLETION OF AUGERING				17			 CI	TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained				GRASS COVER
				-		< <u>&lt;</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	sands, trace of root fibres.	XW	D		MORUYA TONALITE
			N=SPT 12/ 100mm	-				brown and orange brown, fine to coarse grained sand, trace of fine grained quartz gravel and root fibres.				<ul> <li>VERY LOW 'TC' BIT</li> <li>RESISTANCE</li> </ul>
			REFUSAL	-				Extremely Weathered granite: clayey				-
				- 16	1-			gravelly ŚAND, fine to coarse grained, brown and orange brown, fine grained quartz gravel.				
				-				<b>- 3</b>				-
			N > 12 12,12/ 50mm	-								-
			REFUSAL	-		イログ - スペート						-
				- 15	2-							
				-								-
				-								-
_			N=SPT 5/ 50mm REFUSAL	-								-
			INEI USAL	- 14 –	3-							-
				-		'   //'   ` \ _ `						-
i D				-								-
				-								-
				- 13	4-							VERY LOW RESISTANCE
			N=SPT 10/ 50mm REFUSAL	-								- - (POSSIBLY LESS
			REFUSAL	-								- WEATHERED CORE - STONES) -
0				-								-
				- 12	5-							
				12 -								- - -
				-								-
			N=SPT 8/50mm	-								-
			REFUSAL	- 11 –	6-							-
D												-
				-								-
				-								-
	PYRIG											

## **BOREHOLE LOG**

Borehole No. BH4

1	Client: Project: Location		OSE	DE	UROB	DDALL	RE LA HEALTH SERVICE IS HIGHWAY, MORUYA, NSV	N			
-	Job No.:	33942LT					thod: SPIRAL AUGER	R.		face: ~1	7.2 m
	Date: 20/ Plant Tyj	'4/21 <b>5e:</b> JK308				Log	gged/Checked By: W.S./A.B.		atum:	AHD	
Groundwater	SAMPLES DB DB DB DB DB DB DB DB DB DB DB DB DB	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
		N=SPT 10/ 50mm REFUSAL	- 10			-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and orange brown, fine grained quartz gravel. <i>(continued)</i>	XW	D		
		N=SPT	9	8							
		5/ 0mm REFUSAL	- 8 -	9							
		N=SPT 5/ 0mm REFUSAL	- 7	- 10 - - -							
5			- 6 - -	- 11 - - -							
				12 — - -							
			- 4 - -	13 - - - -							

## **BOREHOLE LOG**

Borehole No. BH4

	Pro	ent ojec cati			OSE	DE	UROB	ODALL	RE LA HEALTH SERVICE IS HIGHWAY, MORUYA, NS\	W			
	Jok	) N	<b>o.:</b> 3	3942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face: ~	-17.2 m
			20/4/								atum:	AHD	
		nt		: JK308					gged/Checked By: W.S./A.B.				
Groundwater	Record FS 0	AMF	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
					3-	-		-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and orange brown, fine grained quartz gravel. <i>(continued)</i>	XW	D		
					2-	15 — - -			REFER TO CORED BOREHOLE LOG				· 
					- - 1 -	- - 16 - -							· 
					- - 0- -	- 17 — - -	-						· 
					- -1- -	- 18	-						
					-2  -	19 — - - -	-						
	PYRIGHT				-3	20							

### **CORED BOREHOLE LOG**

Borehole No. BH4

	Pr	-	nt: ect: ntion		PROP	TH INFRASTRUCTURE DSED EUROBODALLA HEAL DP1212271, PRINCES HIGHV					SW		
	Jo	b I	No.:	339	942LT	Core Size:	NML	С			F	<b>R.L. Surface:</b> ~17.2 m	
	Da	ate	: 20/	4/2 ⁻	1	Inclination:	VER		٩L		0	Datum: AHD	
	Pla	ant	t Typ	be:	JK308	Bearing: N	/A				L	ogged/Checked By: W.S./A.B.	
			~		_	CORE DESCRIPTION				OINT LOAD STRENGTH		DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		INDEX I₅(50) □ ⊻ = > 0 □ ⊻ = > 1 □ ⊻ = > 1	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			3 -			START CORING AT 14.90m							
9.02.4.LB.G.B. Log JK CORED BOREHOLE - MASTER 3394.2.1 MORUVA GFJ <<0.7438/mgFHe>> 27.055.2.021 10.00 01 Daget Lab and in Stu Tool - DGD   Lb. JK 9.02.4.2019-05-31 Frg. JK 9.01 0.2019-05-20	RETURN			15- 16- 17- 18- 19- 20-		START CORING AT 14.90m NO CORE 5.25m	SW	M - H			BeU		MORUYA TONALITE
¥	<u> </u> פיים	YRI	GHT		<u> /~ _</u> .	1						I           FIDERED TO BE DRILLING AND HANDLING BR	

### **CORED BOREHOLE LOG**

Borehole No. BH4

(	Clie	ent:		HEALT	H INFRASTRUCTURE						
		ject:			OSED EUROBODALLA HEAL						
		ation			DP1212271, PRINCES HIGH			RUYA, NS	W		
				942LT	Core Size:					L. Surface: ~17.2 m	
		e: 20			Inclination:		TICA	L.		atum: AHD	
Ľ		ntiy	pe:	JK308	Bearing: N	/A		POINT LOAD		DEFECT DETAILS	
Water	Loss\Level Barral Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX Is(50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		-4 -	-		GRANITE: medium to coarse grained quartz, light grey and dark grey.	FR	M - H			(21.20m) J, 70 - 90°, P, R, Cn 	
02-00-02 07		-5 -	- 22-		END OF BOREHOLE AT 21.50 m						
000   LIU. 41 9.45 T \$V 19-9-01 1 1. V 41 4.4		-6 -	23-	- - - - - - - - - - -							
		-7 -	24 -	-							
		-8 -	25-	- - - - - - - -						— - - - - - - - -	
DONE: 101-1		-9-	26-								
		-10-	-			EDACT				DERED TO BE DRILLING AND HANDLING BR	

### **BOREHOLE LOG**

Borehole No. BH5

1/1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~16.5 m Date: 15/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( DB DB DB R DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained СН VSt - Hd RESIDUAL w<PI sand, trace of root fibres. Silty sandy CLAY: high plasticity, brown and grey, fine to coarse grained sand, 16 N > 10 3,10/ 100mm 340 with fine grained quartz gravel and root 300 D MORUYA TONALITE XW REFUSAL \fibres. 460 VERY LOW 'TC' BIT Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. 1 ł RESISTANCE 15 N=SPT 13/ 100mm REFUSAL DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2 i. 14 N=SPT 11/ 100mm REFUSAL 3 Datgel Lab and In Situ Tool -13 10.01.00.01 4 21/05/2021 11:09 N=SPT 6/ 50mm REFUSAL 12 <<Draw GRANITE: medium to coarse grained, DW VL I OW RESISTANCE 33942LT MORUYA.GPJ light grey, light brown and dark grey. 11 1 MASTER i AUGERHOLE END OF BOREHOLE AT 6.00 m 5 10 LB.GLB K 9.02.4

COPYRIGHT

### **BOREHOLE LOG**

Borehole No. BH6

Lo	cati	ion:	LOT 6	DP1	212	271, Pl	RINCE	ES HIGHWAY, MORUYA, NS	N			
			33942LT				Ме	thod: SPIRAL AUGER				~14.3 m
			4/21							atum:	AHD	
	ant	тур	e: JK308	5	1	1	LO	gged/Checked By: W.S./A.B.	1			
Record	SAMF	PLES BD SD	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
GERING				-	-		-	TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained	w~PL			GRASS COVER
OF AUGE			N > 9 8,9/ 150mm	14 -	-		СН	\sand, trace of root fibres. // Silty sandy CLAY: high plasticity, brown and grey, fine to coarse grained sand, with fine to coarse grained quartz gravel	w>PL	VSt - Hd	380 430	RESIDUAL - - - -
			<u>REFUSAL</u>	- 13 -	- 1 		-	and root fibres. Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown.	XW	D		MORUYA TONALITE
			N=SPT 10/ 100mm REFUSAL	12-	2-							- - - - - - - - -
			N=SPT 5/ 50mm REFUSAL	11-	3-							-
			N=SPT 7/ 50mm REFUSAL	- 10 -	4			GRANITE: medium to coarse grained, light grey, light brown and dark grey.	DW	VL	-	LOW RESISTANCE
				9	5							
				8-	6			REFER TO CORED BOREHOLE LOG				- MODERATE BANDS SAMPLE OF RETURN CUTTINGS COLLECTEL GRAVELLY SAND FINE TO MEDIUM GRAINED, QUARTZ GRAVEL.

### **CORED BOREHOLE LOG**

Borehole No. BH6

	Cli	en	nt:		HEALT	H INFRASTRUCTURE						
			ect:			DSED EUROBODALLA HEAL	.TH S	ERVI	ICE			
		-	tion			DP1212271, PRINCES HIGH				SW		
$\vdash$	Joł	bl	No.:	339	942LT	Core Size:	NML	с		F	R.L. Surface: ~14.3 m	
			: 20/			Inclination:			AL.		Datum: AHD	
	Pla	Int	t Typ	e:	JK308	Bearing: N	/A			L	.ogged/Checked By: W.S./A.B.	
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water	Loss/Level	Barrel LIT	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			9-			START CORING AT 5.60m						
22-00-01 07 0.			- 8-	6-	- - - - - - - - - - - -	NO CORE 3.57m					- - - - - - - - -	
			- 7 -	7-	- - - - - - - - - - - -							
	RETURN		- 6 - -	8-	-					260       1       2800       1       1       2800       1       1       2800       1       1       280       1       1       280       1       1       280       1       1       1       280       1       1       1       280       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td></td><td></td></t<>		
			- 5			GRANITE: medium to coarse grained, light grey, dark grey and light brown.	MW	L	•0.090 1 1 •0.10		– – (9.65m) J, 35°, P, R, Cn – (9.72m) J, 35°, P, R, Cn	
			4	10-		as above,	FR	VH	0.10			MORUYA TONALITE
			3-	11-		but light grey and dark grey.					- - - - - -	
			-		-	END OF BOREHOLE AT 11.50 m					-	
		(RI	GHT		-		FRACTI				- IDERED TO BE DRILLING AND HANDLING BR	

### **BOREHOLE LOG**

Borehole No. BH7 1 / 2

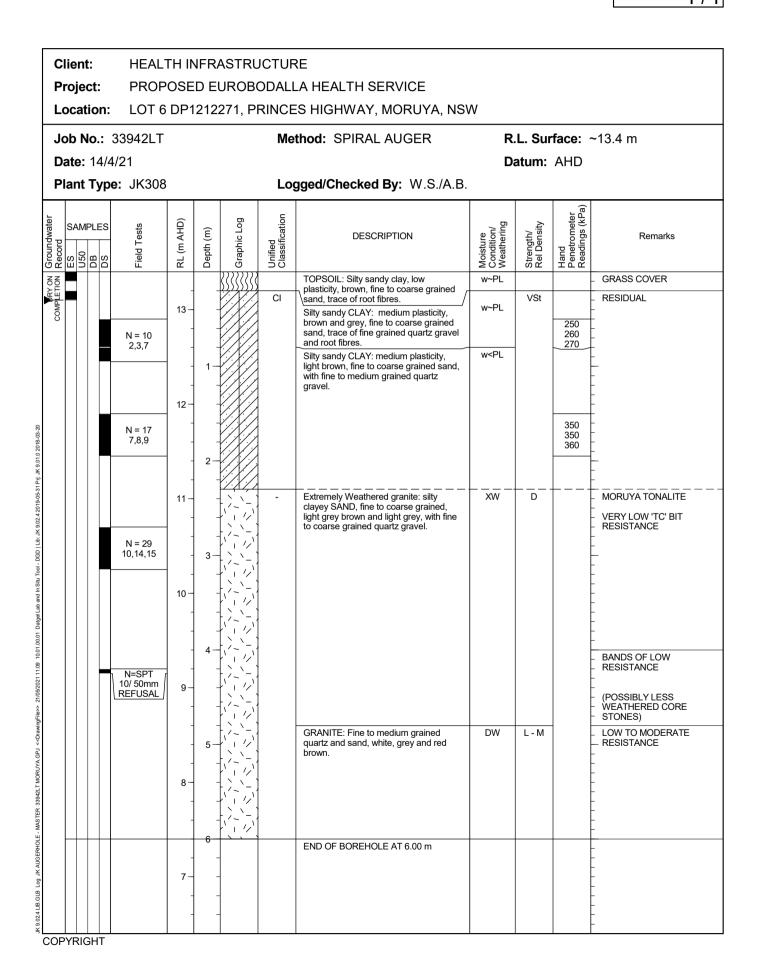
CI	ient:	HEAL	TH IN	NFR/	ASTRL	ICTUF	RE				
	oject:							A./			
	ocation		DP1	212	271, PI		S HIGHWAY, MORUYA, NSV				
	ob No.: ate: 21/-	33942LT				Me	thod: SPIRAL AUGER		L. Sur atum:	face: ~	~9.1 m
		•/∠1 )e: JK308				Lo	gged/Checked By: W.S./A.B.	De	atum.	AND	
										a)	
Groundwater Record	SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
RY ON ETION			9	-		- CH	TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained	w~PL w~PL	VSt	-	- GRASS COVER
DRY ON COMPLETION OF AUGERING			-	-		CIT	\sand, trace of root fibres. Silty sandy CLAY: high plasticity, brown and grey, fine to coarse grained sand,	W-F	voi		
		N = 13 4,5,8	-	-			with fine grained quartz gravel and root fibres.			270 290	-
			8-	- 1							
2		N = 31	-	-		-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown.	XW	D		MORUYA TONALITE VERY LOW 'TC' BIT RESISTANCE
2		12,14,17	-	-	)   //   )_`-)						-
			7-	2-							-
			-	-							-
		N=SPT 8/ 50mm REFUSAL	-	- 3-							-
			6-	-							-
5			-	-	· / //						-
			-	4-							
		N=SPT	5-	-							<ul> <li>VERY LOW RESISTANCE</li> <li>WITH LOW BANDS</li> </ul>
4		6/ 50mm REFUSAL	-	-							- (POSSIBLY LESS - WEATHERED CORE - STONES)
			-	-							- /
5			4 -	5-							-
			-	-							-
			-	-							-
			-	6-			GRANITE: medium to coarse grained	DW	L - M		LOW RESISTANCE WITH
			3-	-	)_`- )     //   /_ //		sand and quartz gravel, light grey, dark grey and red brown.	011	L - IVI		- LOW RESISTANCE WITH - MODERATE BANDS - -
			-	-			REFER TO CORED BOREHOLE LOG				-
	YRIGHT		-	-							-

### **CORED BOREHOLE LOG**

Borehole No. BH7 2/2

	lie)					<b>T</b> U O			_								
	-	ect:			DSED EUROBODALLA HEAL							.,					
Ľ	.00	ation		LOIG	DP1212271, PRINCES HIGH	WAY,	MOH		ΥA	., N	SV	N .					
J	ob	No.:	33	942LT	Core Size:	NML	С							R	R.L. Surface: ~9.	1 m	
C	)ate	<b>e:</b> 21/	4/2	1	Inclination:	VER	TICA	۱L						D	atum: AHD		
F	Plar	nt Typ	e:	JK308	Bearing: N	/A								L	.ogged/Checked	By: W.S./A.B	•
					CORE DESCRIPTION			PC S	DINT TREI	LO/ NGT		0.0.1			DEFECT DET		_
Water Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		IND I _s (5	EX 50)		SP4 (r	nm	)	Type, orientation, roughness, defe	IPTION defect shape and ect coatings and ss and thickness General	Formation
		3-		-													
		-			START CORING AT 6.50m										-		
				- - - -	GRANITE: medium to coarse grained, light grey, dark grey and light brown.	MW	м		0	.60					-		
		_			ight groy, dant groy and ight brown.				0	 .50					_		
		2-	7.														
		-			as above,	SW	-		0	.50					– (7.20m) J, 65°, P, R, Cn –		Ш
_		-			but light grey and dark grey.					 •2.1					-		NALI
100%	ÉE I URI					FR	VH			-2.1							A TO
		1-	8-	+` ' ' '/' + ` ` _ `								l	 		 (8.10m) Ji, 50 - 90°, Un		MORUYA TONALITE
		-									ļ 5.5				-		ž
		-											 		– – (8.60m) J, 0°, P, R, Fe Sn		
											5.5 1						
		-0-	9-								1 6.4	ļ	   -		_		
		-		-	END OF BOREHOLE AT 9.10 m									 	-		
P		-										999	₩ 93 	- 20	_		
		-		-									 	 	-		
		-1-	10-										 	 			
		·		-											-		
0		-												 			
		-											 	 	-		
		-2	11-												- -		
		-2												 	-		
		-		-										 	-		
		-															
		-	12-	-											-		
		-3-										 		 			
n I		-		-						 		 		 	-		
		-								 				 			
L				-		FRACTI						- 660	₹\$		_		

FRACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HANDLING


### **BOREHOLE LOG**

Borehole No. BH8

	oje ocat	ct: ion:						LA HEALTH SERVICE ES HIGHWAY, MORUYA, NS ¹	N			
			33942LT				Ме	thod: SPIRAL AUGER				-12.7 m
			4/21 <b>e:</b> JK308	3			Lo	gged/Checked By: W.S./A.B.		atum:	АПО	
Record	SAM	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION			N > 22 3,12,10/ 50mm		- - - -		СН	TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained sand, trace of root fibres. Silty sandy CLAY: high plasticity, brown and orange brown, fine to coarse grained sand, trace of fine grained quartz gravel and root fibres.	w~PL w <pl< td=""><td>VSt - Hd</td><td>350 360 440</td><td>GRASS COVER RESIDUAL</td></pl<>	VSt - Hd	350 360 440	GRASS COVER RESIDUAL
			N > 34 15,22,12/ 50mm ∖ REFUSAL	/ - - - 111- /	1		-	Extremely Weathered granite: silty clayey SAND, fine to coarse grained, light grey, brown and orange brown,with fine grained quartz gravel.	xw	D		MORUYA TONALITE VERY LOW 'TC' BIT RESISTANCE
			N=SPT 15/ 100mm REFUSAL	- 10	3-						-	- - - - - - - -
				9-	4-						-	- - - - - - -
			N=SPT 22/150mm REFUSAL	   -   8-   -   -	5-			GRANITE: medium to coarse grained, light grey, brown and dark grey.	DW	VL	-	LOW RESISTANCE
-			N=SPT 5/ 0mm REFUSAL	- - - - - - - - - - - - - - - -				END OF BOREHOLE AT 6.00 m				NO SPT SAMPLE
				- - 6-								-

### **BOREHOLE LOG**

Borehole No. BH9



### **BOREHOLE LOG**

Borehole No. BH10 1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER **R.L. Surface:** ~17.1 m Date: 14/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( DB U50 R DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl 17 plasticity, brown, fine to coarse grained w<PI RESIDUAL CI Hd sand, trace of root fibres. Silty sandy CLAY: medium plasticity, brown and grey, fine to coarse grained sand, trace of fine grained quartz gravel N = 11 >600 and root fibres >600 5.5.6 16 Extremely Weathered granite: silty clayey SAND, fine to coarse grained, xw D MORUYA TONALITE 1, light grey, brown and orange brown, with VERY LOW 'TC' BIT N=SPT RESISTANCE fine grained quartz gravel. 13/ 100mm DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 REFUSAL 2 1 15 1 7 I OW RESISTANCE GRANITE: medium to coarse grained, VI light grey brown and dark grey. N=SPT 6/ 50mm REFUSAL 3 14 Datgel Lab and In Situ Tool -10.01.00.01 4 13 21/05/2021 11:09 N=SPT 5/ 0mm REFUSAL LOW RESISTANCE WITH MODERATE BANDS (POSSIBLY LESS <<Drail WEATHERED CORE STONES) 33942LT MORUYA.GPJ 12 MASTER MODERATE GRANITE: medium to coarse grained, М light grey and dark grey. RESISTANCE AUGERHOLE END OF BOREHOLE AT 6.00 m 11 5 G .B.GLB K 9.02.4 COPYRIGHT

### **BOREHOLE LOG**

Borehole No. BH11 1 / 1

	lient: roject:						RE LA HEALTH SERVICE				
	ocatior						ES HIGHWAY, MORUYA, NSV	V			
J	ob No.:	33942L	Г			Ме	thod: SPIRAL AUGER	R.	.L. Su	face: ~	~19.4 m
	ate: 14							Da	atum:	AHD	
P	lant Ty	pe: JK30	8	1		Lo	gged/Checked By: W.S./A.B.			, , , , , , , , , , , , , , , , , , ,	
Groundwater Record		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
RY ON				_			TOPSOIL: silty sandy clay, low plasticity, brown, fine to coarse grained sands,	w~PL		-	GRASS COVER
DRY ON COMPLETION			19-	-		CH	\trace of root fibres. Silty sandy CLAY: high plasticity, brown	w <pl< th=""><th>VSt</th><th></th><th>- RESIDUAL -</th></pl<>	VSt		- RESIDUAL -
0		N=SPT 22/ 150mn REFUSAL		-		-	and grey, fine to coarse grained sand, trace of fine grained quartz gravel and root fibres.	XW	D	350	- MORUYA TONALITE
				- - 1-			Extremely Weathered granite: silty clayey SAND, fine to coarse grained,				-
				-			light grey, brown and orange brown, with fine grained quartz gravel.				<ul> <li>VERY LOW 'TC' BIT</li> <li>RESISTANCE</li> </ul>
		N=SPT	18-	-							-
		12/ 150mn REFUSAL									- - -
				2-							-
			17-	-							-
			17 -								VERY LOW RESISTANCE
		N=SPT 7/ 50mm	[	-							- WITH LOW BANDS - (POSSIBLY LESS - WEATHERED CORE
		REFUSAL	_	- 3-	+` ' '/`   `.`^_`						- STONES)
			16-								-
				-							-
											-
		N=SPT		- 4-							-
		5/ 0mm REFUSAL	. 15-	-							-
				-			GRANITE: medium to coarse grained, light grey, dark grey and brown.	DW	VL - L		- LOW RESISTANCE WITH - MODERATE BANDS
				- 5-							-
				-	         						-
			14 -	-			GRANITE: medium to coarse grained,		L - M	-	- MODERATE - RESISTANCE
							light grey and dark grey and brown.				- NLOIOTANUE - -
				6-			END OF BOREHOLE AT 6.00 m				-
				-							-
			13-								-
				-	-						-
	PYRIGHT										

### **BOREHOLE LOG**

Borehole No. BH12 1 / 1

Client:	HEAL		NFR.	ASTRU	JCTUF	RE				
Project:		OSE	DE	UROB	DALL	A HEALTH SERVICE				
Location	: LOT 6	DP1	212	271, PI	RINCE	S HIGHWAY, MORUYA, NS\	N			
Job No.:	33942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~21.1 m
Date: 15/	4/21						Da	atum:	AHD	
Plant Typ	<b>be:</b> JK308				Loạ	gged/Checked By: W.S./A.B.				
Groundwater Record DB DB DS DS DS DS DS DS DS DS DS DS DS DS DS	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION		21 -	-			TOPSOIL: Silty sandy clay, low hypersticity, brown, fine to coarse grained	w~PL			_ GRASS COVER
DE		-	-		CI	\sand, trace of root fibres.	w>PL XW	D		- RESIDUAL - MORUYA TONALITE
8	N = 37	-	-		-	brown and grey, fine to coarse grained sand, with fine grained quartz gravel and	~~~	D		- VERY LOW 'TC' BIT
	13,23,14	-	-			root fibres. Extremely Weathered granite: clayey				- RESISTANCE
		20 -	1			SAND, fine to coarse grained, light grey, brown and orange brown, with fine grained guartz gravel.				-
		-	-	()   //)   ) /- )		9.4.104 444.2 9.4.01				-
	N=SPT 11/ 100mm	-	-							-
	REFUSAL	-	-							-
2 5 5		19 -	2-							-
		-	-	· · · · · · · · · · · · · · · · · · ·						-
		-	-							-
	N=SPT 8/ 50mm REFUSAL	-	-							-
	REPUSAL	18 -	3-			GRANITE: medium to coarse grained,	DW	VH		 VERY HIGH RESISTANCE
		-	-	-		\light grey and dark grey. END OF BOREHOLE AT 3.20 m				'TC' BIT REFUSAL
		-	-							-
		-	-							-
		17 -	4-							-
		-								-
		-	-	-						-
		-	-							- - -
		16	5-							-
		-	-							-
		-	-							-
		-	-							-
		15 -	6-							-
		-								-
		-	-							-
		-	-							-
COPYRIGHT										

### **BOREHOLE LOG**

Borehole No. BH13

1/1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~16.7 m Date: 15/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests E DESCRIPTION Remarks Depth ( DB DB DS R DRY ON COMPLETION TOPSOIL: silty sandy clay, low plasticity, brown, fine to coarse grained sand, GRASS COVER w~Pl СН w>PL VSt RESIDUAL trace of root fibres Silty sandy CLAY: high plasticity, brown and grey, fine to coarse grained sand, N > 14 290 4,14/ 150mm with fine grained quartz gravel and root 600 w~PL MORUYA TONALITE 16 Hd REFUSAL fibres Extremely Weathered granite: clayey XW D VERY LOW 'TC' BIT _ gravelly SAND, fine grained, fine grained RESISTANCE 1, quartz gravel, light grey, brown and orange brown. i N > 10 10,10/ 50mm DGD | Lib: JK 9.02.4 2019-05-31 Prj: JK 9.01.0 2018-03-20 15-REFUSAL 2 14 N > 5 NO SPT SAMPLE 10,5/ 50mm RETURN REFUSAL END OF BOREHOLE AT 2.90 m 3 VERY HIGH RESISTANCE 'TC' BIT REFUSAL Datgel Lab and In Situ Tool -13 10.01.00.01 4 21/05/2021 11:10 <<DrawingFile>> 12 5 33942LT MORUYA.GPJ MASTER 11 6 JK AUGERHOLE 50 K 9.02.4 LIB.GLB 10 COPYRIGHT

### **BOREHOLE LOG**

Borehole No. BH14 1 / 1

	lient		HEALT									
	rojec							_A HEALTH SERVICE				
	ocat							S HIGHWAY, MORUYA, NSV	v			
J	ob N	lo.: 3	33942LT					thod: SPIRAL AUGER		L. Sur	face: ~	~12.0 m
	ate:									atum:		
P	lant	Туре	<b>ə:</b> JK308				Lo	gged/Checked By: W.S./A.B.				
Groundwater Record	SAMF	PLES BO	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
NO Y TION				-				TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained	w~PL			GRASS COVER
DRY ON COMPLETION			N=SPT 12/ 100mm REFUSAL	-			СН	Sand, trace of root fibres. Sandy silty CLAY: high plasticity, brown and grey, fine to coarse grained sand, with fine grained quartz gravel and root fibres.	w>PL	VSt	250 230 200	RESIDUAL
				11 -	1-		-	Extremely Weathered granite: clayey gravelly SAND, fine grained, fine to coarse grained quartz gravel, light grey, brown and orange brown.	XW	D		MORUYA TONALITE VERY LOW 'TC' BIT RESISTANCE
			N = 46 12,22,24	- - 10 -	2-							-
			N > 36 13,16,20/ 50mm REFUSAL f	- - 9 - -	3-							-
			N=SPT 5/ 0mm REFUSAL	- - - - -	4			GRANITE: medium to coarse grained,	DW	L - M		-         
				7	5-			dark and light grey.	DW	L - M		MODERATE BANDS
COF	PYRIC	GHT			- 6 -	-		END OF BOREHOLE AT 6.00 m				-

### **BOREHOLE LOG**

Borehole No. BH15

1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~15.5 m Date: 14/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests E DESCRIPTION Remarks Depth ( U50 DB DS R DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained CI w>PI RESIDUAL Hd sand, trace of root fibres. Silty sandy CLAY: medium plasticity, brown and grey, fine to coarse grained 15 400 sand and quartz gravel, trace of fine N = 16 550 3,6,10 grained quartz gravel and root fibres. >600 Extremely Weathered granite: clayey XW D MORUYA TONALITE _ sandy GRAVEL, fine to medium grained 14 N > 29 VERY LOW 'TC' BIT RESISTANCE quartz, light grey, brown and orange brown, fine to coarse grained sand. 1 8,18,11/ 50mm REFUSAL DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2 13 N=SPT 7/ 50mm REFUSAL 3 and In Situ Tool -12 Datgel Lab 10.01.00.01 л 21/05/2021 11:10 N=SPT 9/ 80mm REFUSAL 11 <<Drail 5 MORUYA.GPJ 33942LT 10 MASTER лw LOW TO MODERATE 1 GRANITE: medium to coarse grained, L - M light grey and dark grey. RESISTANCE AUGERHOLE END OF BOREHOLE AT 6.00 m 5 9 K 9.02.4 LIB.GLB

### **BOREHOLE LOG**

Borehole No. **BH16** 

1/3

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER **R.L. Surface:** ~17.9 m Date: 17/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record ES U50 DB S S S S S S S (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log Field Tests E DESCRIPTION Remarks Depth ( Ч DRY ON COMPLETION OF AUGERING TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained RESIDUAL CI w>PI sand, trace of root fibres. Silty sandy CLAY: medium plasticity, XW D MORUYA TONALITE N=SPT brown and grey, fine to coarse grained >600 sand and quartz gravel, trace of fine 10/ 100mm VERY LOW 'TC' BIT RESISTANCE 1 REFUSAL grained quartz gravel and root fibres. Extremely Weathered granite: clayey 17 1 gravelly SAND, fine to coarse grained, light grey, brown and orange brown, fine grained quartz gravel. N=SPT 20/ 150mm REFUSAL 16 2 N > 13 13,13/ 15 100mm 3 REFUSAL 14 4 N=SPT 8/ 50mm REFUSAL 13 5 VERY LOW RESISTANCE WITH LOW BANDS Extremely Weathered granite: gravelly SAND, fine to coarse grained, light grey, brown and orange brown, fine to coarse grained quartz gravel, trace of fines. (POSSIBLY LESS WEATHERED CORE STONES) N=SPT 5/ 0mm 12 REFUSAL 6 K 9.02.4 11

DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 and In Situ Tool -Datgel Lab 10.01.00.01 21/05/2021 11:10 <<Drail MORUYA.GPJ 33942LT MASTER AUGERHOLE 5 -B.GLB

### **BOREHOLE LOG**

Borehole No. BH16

F	Pro	ent: jec			OSE	DE	UROB	ODALI	RE LA HEALTH SERVICE ES HIGHWAY, MORUYA, NS	\ <b>\</b> /			
_					DFI		211, F		thod: SPIRAL AUGER				47.0
				33942LT 1/21				we	thod: SPIRAL AUGER		atum:		~17.9 m
				e: JK308				Log	gged/Checked By: W.S./A.B.		atann	7.110	
	Т											oa)	
Groundwate	ES ES	AMPI		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			-	N=SPT 10/ 50mm	-	-		-	Extremely Weathered granite: gravelly SAND, fine to coarse grained, light grey, brown and orange brown, fine to coarse grained quartz gravel, trace of fines.	xw	D	-	-
				REFUSAL	-	-			GRANITE: medium to coarse grained, dark grey and light grey.	DW	L - M		- MODERATE RESISTANCE - -
	1				10-	8-	[/ <u> </u>		REFER TO CORED BOREHOLE LOG				-
					-	-	_						-
					-	-	-						-
					- 9-	-	-						-
					-	9	-						
					-	-	_						-
					-	-							-
					8-	10-	-						-
					-	-							-
					-	-	-						-
					7-	-							-
					-	11-	-						-
					-	-							-
0					-	-	-						-
					6-	12-	-						-
					-	-	-						-
					-	-	-						-
					5-	13-	-						-
					-	-							- -
					-	-	-						-
					- 4	-	-						- - -
CO						I	I		I	1	I	1	I

### **CORED BOREHOLE LOG**

Borehole No. BH16

C	Clie	nt:	ł	HEALT	HINFRASTRUCTURE						
	-	ect:									
		ation			DP1212271, PRINCES HIGH			RUYA, NS			
				42LT	Core Size:					<b>.L. Surface:</b> ~17.9 m	
		e: 17/		JK308	Inclination: Bearing: N/		TICA	AL.		atum: AHD ogged/Checked By: W.S./A.B.	
Ľ		іс і у _і			CORE DESCRIPTION	~		POINT LOAD		DEFECT DETAILS	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			-		START CORING AT 7.80m					- - - - - - -	
03-20		10	8		GRANITE: medium to coarse grained, red brown, dark grey and light grey.	MW	L	•0.070     		—— (7.94m) J, 90°, P, S, Cn —— (8.21m) J, 15°, P, R, Cn —— (8.40m) J, 60 - 90°, Cu, R, Fe Sn, XW infill	
2019-00-21 PTJ; JN 8-01-0 2010-	RETURN	9	- - 9 - - -					•0.30		— (8.74m) J, 45°, P, R, Cn — (8.90m) J, 20°, P, R, Cn — (9.13m) J, 0 - 20°, Cu, R, Cn — (9.22m) J, 0 - 20°, Cu, R, Cn	MORUYA TONALITE
1201 - 2012 - 2001 - 2001 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 2002 - 20		- 8 -	- - - - - 10- - - -					•0.020       •0.10       		— (9.50m) J, 40°, P, S, XW infill — (9.55m) J, 40°, 90°, P, R, Cn — (9.78m) J, 20°, P, R, Cn — (9.90m) J, 70°, P, R, Fe Sn — (10.30m) J, 75 - 90°, P, R, Fe Sn	MORUY
Dagel La		-	-					•0.20	290. 59	-	
11:10 10:01:00:00:00:00:00:00:00:00:00:00:00:0			- - - - - - - - -		END OF BOREHOLE AT 10.64 m						
יובא טטמיגרו אטאיטיי ייטימיי		6	- - - - - - - - - - - - - - - - - - -								
a oue rog an cover extender - max		5	-          								
		4- RIGHT	-			RACTI	JRES		 ଛି ଝି ଛ ଝ         ARE CONSII	- - - DERED TO BE DRILLING AND HANDLING BR	EAKS

### **BOREHOLE LOG**

Borehole No. BH17 1 / 1

Client:	HEAL	TH IN	NFR/	ASTRU	ICTUF	RE				
Project:						A HEALTH SERVICE				
Location:	LOT 6	DP1	212	271, PI	RINCE	S HIGHWAY, MORUYA, NSV	N			
Job No.: 3	3942LT				Ме	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~17.4 m
Date: 14/4/2								atum:	AHD	
Plant Type:	: JK308				Lo	gged/Checked By: W.S./A.B.				
Groundwater Record DB DB DB DB DB	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
		-	-		-	TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained	w~PL			GRASS COVER
		17	-		CL	\sand, trace of root fibres.	w <pl XW</pl 	D		- RESIDUAL - MORUYA TONALITE
	N = 35 8,13,22	-	- - 1-		-	and grey, fine to coarse grained sand and quartz gravel, trace of fine grained quartz gravel and root fibres. Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, light grey, brown and orange brown, fine		U		- VERY LOW 'TC' BIT - RESISTANCE
		- 16	-			grained quartz gravel.				-
	N=SPT 5/ 150mm (	-	-							-
	REFUSAL	-	-							-
		-	2-						-	-
		- 15	-							
		-	-							- - -
	N=SPT 4/ 100mm [	-	-							-
	REFUSAL	-	3-							- 
		-	-							-
		14	-							-
		-		/ '						-
		-	4-						-	 LOW RESISTANCE WITH
	N=SPT 5/ 20mm	-	-							- VERY LOW BANDS
	REFUSAL	13 -	-							- (POSSIBLY LESS - WEATHERED CORE - STONES)
þ		-	-	, / , /						- -
		-	5-							-
		-	-							-
		12 -	-							-
		-	-							- - -
			6-	)_`- )		END OF BOREHOLE AT 6.00 m				-
		-	-							-
		11 -	-							-
		-	-							-
COPYRIGHT										-

### APPENDIX | - PSI INFORMATIC JKGeotechnics

### **BOREHOLE LOG**

Borehole No. BH18

1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~19.3 m Date: 14/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests E DESCRIPTION Remarks Depth ( DB U50 Ч DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained CL RESIDUAL w<PI sands, trace of root fibres. 19 Silty sandy CLAY: low plasticity, brown MORUYA TONALITE XW П _ N=SPT and grey, fine to coarse grained sand, trace of fine grained quartz gravel and 20/ 100mm 1/ VERY LOW 'TC' BIT ł root fibres REFUSAL RESISTANCE Extremely Weathered GRANITE: Clayey 1 gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. ÷ 1 18 ł. N > 15 1 12 15/ 150mm REFUSAL 1, DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2 1, 17 N=SPT 1 5/ 20mm REFUSAL 3 1 Datgel Lab and In Situ Tool -16 GROUNDWATER MONITORING WELL INSTALLED TO 5.8m. CLASS 18 MACHINE 1, SLOTTED 50mm DIA. PVC STANDPIPE 2.8m TO 10.01.00.01 5.8m. CASING 0.1m TO 2.8m. 2mm SAND 1, 4 ł BACKFILL 3m TO 5.8m. BENTONITE SEAL 2m TO 21/05/2021 11:10 N=SPT 1, 15 6/ 20mm REFUSAL 3m. BACKFILLED WITH CUTTINGS TO SURFACE COMPLETED WITH A <<DrawingFile>> CONCRETED GATIC COVER 5 VERY LOW RESISTANCE WITH LOW BANDS 33942LT MORUYA.GPJ 1, 1 (POSSIBLY LESS 14 WEATHERED CORE STONES) MASTER 1/ GRANITE: medium to coarse grained DW М MODERATE RESISTANCE quartz gravel and sand, orange brown, JK AUGERHOLE white grey and dark grey. END OF BOREHOLE AT 6.00 m 13 5 K 9.02.4 LIB.GLB

### **BOREHOLE LOG**

Borehole No. BH19

1/1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~20.0 m Date: 17/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record ES % U50 DB SS SS (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log Field Tests Ê DESCRIPTION Remarks Depth ( R DRY ON COMPLETION TOPSOIL: Silty sandy clay, medium w~PL GRASS COVER plasticity, brown grey, fine to coarse VSt - Hd RESIDUAL CI w<PI grained sand, trace of root fibres Silty sandy CLAY: medium plasticity, brown and grey, fine to coarse grained sand, trace of fine grained quartz gravel D MORUYA TONALITE N = 23XW 3,8,15 and root fibres. Extremely Weathered granite: Clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. 1, VERY LOW 'TC' BIT ł 19 1 RESISTANCE 1 ł N=SPT 10/ 100mm GRANITE: medium to coarse grained, DW VERY LOW RESISTANCE DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 REFUSAL WITH LOW BANDS 1 orange brown, grey and dark grey Μ MODERATE 18 2 RESISTANCE 1, Т END OF BOREHOLE AT 2.20 m 'TC' BIT REFUSAL 3 17 Datgel Lab and In Situ Tool -10.01.00.01 16 4 21/05/2021 11:10 <<DrawingFile>> 15 5 33942LT MORUYA.GPJ MASTER JK AUGERHOLE 6 14 50 K 9.02.4 LIB.GLB

### **BOREHOLE LOG**

Borehole No. BH20

Pro	ent: oject: catio		PROP	OSE	DE		DALI	RE LA HEALTH SERVICE ES HIGHWAY, MORUYA, NSV	V			
Job	b No.	: 339	942LT				Ме	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~20.6 m
	<b>te:</b> 17								Da	atum:	AHD	
Pla	int Ty	vpe:	JK308				Lo	gged/Checked By: W.S./A.B.				
Groundwater Record FS 0	SAMPLE	S	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
				-	_			TOPSOIL: Silty sandy clay, medium plasticity, brown grey, fine to coarse	w~PL			GRASS COVER
COMPLETION OF AUGERING			l = 21 5,7,14	20 –	-		CI -	\grained sand, trace of root fibres. Sandy silty CLAY: medium plasticity, brown and grey, fine to coarse grained sand, trace of fine grained quartz gravel and root fibres.	w~PL	St D	170 200	RESIDUAL     MORUYA TONALITE
					1 -			Extremely Weathered granite: Clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown, trace of silt.				- VERY LOW 'TC' BIT - RESISTANCE
		12/	=SPT 100mm   FUSAL	- 19 - -	- - 2-							- - - - -
		8/	=SPT 50mm FUSAL	- - 18 - -	- - - 3-			Extremely Weathered granite: gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown.				· · · · · ·
				- 17 — -	- - 4 —							- - - - - -
		5/	=SPT 20mm FUSAL	- - - - -	- - - 5							- - - - - - - - - - - - - - - - - - -
				-	-			GRANITE: medium to coarse grained,	DW	(L - M)	-	- (POSSIBLY LESS - WEATHERED CORE - STONES) - LOW RESISTANCE
				- 15	6-			brown, light grey and dark grey. REFER TO CORED BOREHOLE LOG		(= 101)		
				- 14 —	-							- - - - -

# APPENDIX | - PSI INFORMATIC JKGeotechnics

Core Size: NMLC

### **CORED BOREHOLE LOG**

HEALTH INFRASTRUCTURE

Client:

Project:

Location:

Job No.: 33942LT

**Borehole No. BH20** 

2 / 2 PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW R.L. Surface: ~20.6 m

			. 000		0010 0120.						
	Dat	te: 17	7/4/21		Inclination:	VER	TICA	L	D	atum: AHD	
	Pla	nt Ty	/pe:	JK308	Bearing: N	/A			L	ogged/Checked By: W.S./A.B.	
Water	Loss/Level	Bairei Liit RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		15		-	START CORING AT 5.70m					- - - - -	
9.01.0 2018-03-20		14			NO CORE 1.20m						
<4DrawingPles> 2105/2021 11:10 10.01.00.01 Daget Lab and In Situ Tool - DGD   Lib: uK 9.02.4 2016-05-31 Prj. uK 9.01.0 2018-03-20 R PNA.	RETURN	13	- 8-		GRANITE: medium to coarse grained, light brown, light grey and dark grey.	HW	VL	*0.060               *0.080               +0.050                             	20		MORUYA TONALITE
< <drawingfile>&gt; 21/05/2021 11:10 10.01.0</drawingfile>		11	- 9- - 9-			MW	L	•0.070               0.30                         •0.20     		(8.88m) J, 20°, P, R, Fe Sn 	×
JK 9.024 LIB.GLB Log JK CORED BOREHOLE - MASTER 33942LT MORUYA.GPJ <		10	- 10- 		END OF BOREHOLE AT 9.80 m						
	)PY	9 RIGH				FRACTU	JRES N	               	                     	- - - - - - - DERED TO BE DRILLING AND HANDLING BR	EAKS

### **BOREHOLE LOG**

Borehole No. BH21 1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER **R.L. Surface:** ~19.9 m Date: 15/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( U50 DB DB R DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained St - VSt RESIDUAL CI w>PI sand, trace of root fibres. HP ON BASE OF Silty sandy CLAY: medium plasticity, brown and grey, fine to coarse grained U50=200 kPa N > 14хw D MORUYA TONALITE 12,14/ sand, with fine grained quartz gravel and 100mm root fibres 1 Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. VERY LOW 'TC' BIT REFUSAL 19 RESISTANCE 1 i N > 13 12,13/ 80mm DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 REFUSAL 18 2 N=SPT 7/ 20mm REFUSAL 17 3 Datgel Lab and In Situ Tool -10.01.00.01 16 4 21/05/2021 11:10 N=SPT 5/ 0mm REFUSAL <<Draw 15 5 33942LT MORUYA.GPJ DW VL LOW RESISTANCE GRANITE: medium to coarse grained, 1 light grey, brown and dark grey. MASTER 1, Ŧ 14 AUGERHOLE END OF BOREHOLE AT 6.00 m 5 LB.GLB K 9.02.4 13

### **BOREHOLE LOG**

Borehole No. BH22 1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~12.6 m Date: 15/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record ES % U50 DB SS SS (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log Field Tests E DESCRIPTION Remarks Depth ( Ч DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained w>PI VSt 250 CI RESIDUAL sands, trace of root fibres. HP DISTURBED AUGER Silty sandy CLAY: medium plasticity, brown and grey, fine to coarse grained xw П SAMPLE N=SPT 12 MORUYA TONALITE sand, with fine grained quartz gravel and 22/ 100mm 1, REFUSAL root fibres VERY LOW 'TC' BIT Extremely Weathered granite: clayey RESISTANCE gravely SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. N > 18 11 16 18/ DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 100mm REFUSAL 2 10 N=SPT 18/ 150mm REFUSAL 3 and In Situ Tool -Datgel Lab 9 10.01.00.01 л VERY LOW RESISTANCE 1/05/2021 11:11 WITH LOW BANDS N=SPT 14/ 100mm REFUSAL (POSSIBLY LESS WEATHERED CORE STONES) 8 <<Draw MORUYA.GPJ 33942LT 7 MASTER 1 AUGERHOLE END OF BOREHOLE AT 6.00 m 5 6 LB.GLB K 9.02.4 COPYRIGHT

### **BOREHOLE LOG**

Borehole No. BH23

1/1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~11.2 m Date: 17/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( DB DB DS Ч DRY ON COMPLETION TOPSOIL: Silty sandy clay, low w~PL GRASS COVER CI plasticity, brown, fine to coarse grained 11 w>PL RESIDUAL sand, trace of root fibres. xw D MORUYA TONALITE Sandy silty CLAY: medium plasticity, light brown and grey, fine to coarse grained sand, with fine grained quartz 1, VERY LOW 'TC' BIT N = 38RESISTANCE 16,20,18 gravel and root fibres Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. 10 N=SPT 19/ 100mm REFUSAL DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2 1 1 9 N=SPT 10/ 100mm REFUSAL 3 VERY LOW RESISTANCE and In Situ Tool -WITH LOW BANDS 8 (POSSIBLY LESS WEATHERED CORE STONES) Datgel Lab 10.01.00.01 4 21/05/2021 11:11 7 N=SPT 7/ 50mm REFUSAL <<Drail 5 GRANITE: medium to coarse grained DW Μ MODERATE RESISTANCE 33942LT MORUYA.GPJ quartz, light and dark grev. 6 MASTER AUGERHOLE END OF BOREHOLE AT 6.00 m 5. 5 G .B.GLB K 9.02.4

### **BOREHOLE LOG**

Borehole No. **BH24** 1/3

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~13.7 m Date: 16/4/21 Datum: AHD Plant Type: JK308 Logged/Checked By: W.S./A.B. Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( DB DB DB R DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained 100 w>PI St RESIDUAL CI sand, trace of root fibres. Silty sandy CLAY: medium plasticity, MORUYA TONALITE xw П orange brown, grey and brown, fine to coarse grained sand, with fine grained N=SPT 21/ 150mm VERY LOW 'TC' BIT RESISTANCE 13 1 REFUSAL quartz gravel, trace of root fibres. Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, dayey fine grained quartz gravel, light grey, brown and orange brown. N=SPT 17/ 100mm 12 REFUSAL DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2 11 N=SPT 12/ 150mm REFUSAL 3 and In Situ Tool -Datgel Lab 10 10.01.00.01 21/05/2021 11:11 N=SPT 6/ 20mm REFUSAL DW LOW RESISTANCE WITH GRANITE: medium to coarse grained, L - M dark grey and red brown. MODERATE BANDS 9 <<Draw 5 MORUYA.GPJ 33942LT MASTER 8 JK AUGERHOLE 6 5 .B.GLB 7 K 9.02.4 COPYRIGHT



### **BOREHOLE LOG**

Borehole No. BH24 2 / 3

Clie	nt:	HEAL		NFR/	ASTRU	JCTUF	E				
Proj							A HEALTH SERVICE				
Loca	ation:	LOT 6	DP1	212	271, P		S HIGHWAY, MORUYA, NSV	N			
		33942LT				Me	thod: SPIRAL AUGER				~13.7 m
	e: 16/4					Datum: AHD					
Plan	тур	e: JK308				LOĮ	gged/Checked By: W.S./A.B.				
Groundwater Record ES S	MPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
				-	· · · · · ·		GRANITE: as above				
			-	-							-
			6-	-							-
				8-							-
			-	-							-
			-	-							-
			5-	-							-
			-	9—							-
			-	_							-
			4-	-							-
			-	- 10							-
			-	-							
			-	-							-
0			3-	-							-
			-	11							-
			-	-							-
			-	-							-
Þ			2-	-							-
			-	12 —							-
			-	-							-
			- 1-	-							-
			-	- 13							-
			-	-							-
6			-	-							-
			0-	-							-
			-								-

### APPENDIX | - PSI INFORMATIC JKGeotechnics

### **CORED BOREHOLE LOG**

Borehole No. **BH24** 3/3

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Core Size: NMLC **R.L. Surface:** ~13.7 m Inclination: VERTICAL Date: 16/4/21 Datum: AHD Plant Type: JK308 Bearing: N/A Logged/Checked By: W.S./A.B. CORE DESCRIPTION POINT LOAD DEFECT DETAILS STRENGTH SPACING DESCRIPTION (m AHD) Graphic Log Rock Type, grain characteristics, colour, Water Loss\Level Neathering INDEX Ë Ê (mm) Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Formation texture and fabric, features, inclusions Strength I_s(50) Barrel L Depth ( and minor components ۲ 600 200 20 START CORING AT 7.10m Specific General SW GRANITE: medium to coarse grained, М 1 (7.26m) Jh, 30°, P 1dark grey and red brown. 0.40 1 1/ (7.40m) J. 45°. P. R. Fe Sn - (*1*.40m) J, 45°, P, R, Fe Sn - (7.50m) J, 0°, P, R, Cn - (7.55m) J, 90°, P, R, Fe Sn - (7.60m) J, 20°, P, R, Fe Sn - (7.67m) J, 40°, P, R, Fe Sn - (7.75m) J, 65°, P, R, Fe Sn ١_ 11/ 6 ۸. **MORUYA TONALITE** as above. 1/ but light grev and dark grev. 8 ı. (8.00m) J, 80 - 90°, P, R, Fe Sn 00% TURN (8.25m) J, 70 - 80°, P, R, Fe Sn 1 I 0.10 (8.40m) J, 30°, P, R, Fe Sn DGD | Lib: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 (8.60m) J, 65°, P, R, Fe Sn 5 (8.75m) J, 65°, P, R, Fe Sn (8.79m) J, 5°, P, R, Fe Sn (8.90m) J, 30°, P, S, Fe Sn (8.98m) J, 30°, P, S, Fe Sn 0.20 ł 9 0.70 I — (9.37m) J, 20°, P, R, Fe Sn ≿ (9.43m) J, 80 - 90°, P, R, Fe Sn END OF BOREHOLE AT 9.45 m 4 5 10 1 1 and In Situ 1 Datgel Lal 29 29 29 28 10.01.00.01 3 1 11 1/05/2021 1 2 MORUYA.GPJ 12 33942LT MASTER 1 BOREHOLE 13 CORED 5 G K 9.02.4 LIB.GLB 0 3 2 3 4

COPYRIGHT

FRACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HANDLING BREAKS

### **BOREHOLE LOG**

Borehole No. BH25

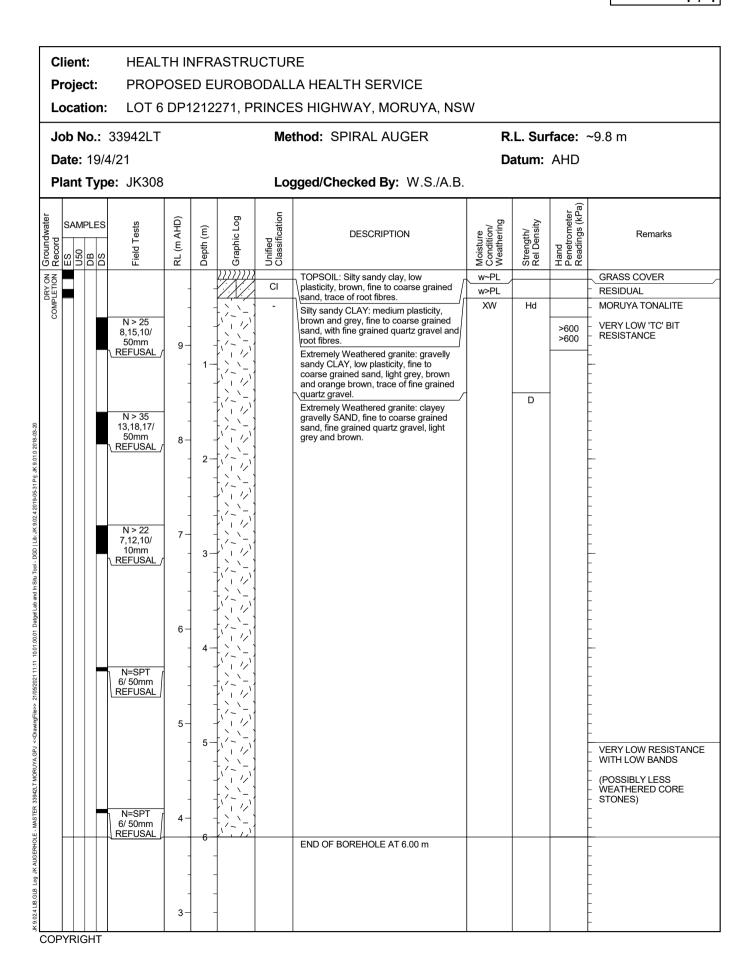
0	Clien	t:	HEAL	TH IN	NFR.	ASTRL	ICTUF	RE				
F	Proje	ct:	PROP	OSE	DE	UROB	DDALI	A HEALTH SERVICE				
L	ocat	tion	LOT 6	DP1	212	271, PI	RINCE	ES HIGHWAY, MORUYA, NSV	V			
	lob N	lo.:	33942LT				Ме	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~15.2 m
1	Date:	16/	4/21						Da	atum:	AHD	
F	Plant	Тур	<b>be:</b> JK308				Lo	gged/Checked By: W.S./A.B.				
Groundwater	ES S	PLES	Tes	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON				15 -	-			TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained	w~PL			_ GRASS COVER
DF				-	-		CI	\sand, trace of root fibres.	w>PL	D		
c			N > 12 9,12/ 50mm ∖ REFUSAL ∫	- - 14	- - 1		-	orange brown, grey and brown, fine to coarse grained sand, with fine to coarse grained quartz gravel, trace of root fibres. Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown.	XW	D		- MORUYA TONALITE - VERY LOW 'TC' BIT - RESISTANCE 
			N=SPT 10/ 50mm REFUSAL	- - - - - -	2-							- - - - - - - - - - - -
			N=SPT 5/ 0mm REFUSAL	- - - - - -	3 - - 4							- NO SPT SAMPLE - RETURN - - - - - - - - - - - - - - - - - - -
				11 -	-			GRANITE: medium to coarse grained,	DW	Н		- HIGH RESISTANCE
				- - - 10				dark grey and light grey.				- - 'TC' BIT REFUSAL - - - - - - -
	PYRIO			- - 9- - - -	- - - - - - - - -							

### **BOREHOLE LOG**

Borehole No. BH26

С	lient:	HEAL		NFR.	ASTRU	JCTUF	RE				
	roject:						A HEALTH SERVICE				
L	ocation:	LOT 6	DP1	212	271, P	RINCE	S HIGHWAY, MORUYA, NS	N			
		33942LT				Me	thod: SPIRAL AUGER	R	.L. Sur	face: [,]	~13.0 m
	ate: 16/4					_		D	atum:	AHD	
P	lant Typ	e: JK308			1	Lo	gged/Checked By: W.S./A.B.	1	1		
Groundwater Record	SAMPLES SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			-	-			TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained	w~PL	<u> </u>		GRASS COVER
DI			-	-		CL	\sand, trace of root fibres.	w <pl< th=""><th>St - VSt</th><th></th><th>- RESIDUAL -</th></pl<>	St - VSt		- RESIDUAL -
		N = 6 2,3,3	- - 12-	- - 1 —			brown, gréy and brown, fine to coarse grained sand, trace of fine grained quartz gravel, and root fibres.			250 150	- - - - - -
			-	-		-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained,	XW	D		MORUYA TONALITE
ą		N > 16 11,16/	_	-	(1, 0)		fine grained quartz gravel, light grey, brown and orange brown.				<ul> <li>VERY LOW 'TC' BIT</li> <li>RESISTANCE</li> </ul>
		100mm REFUSAL	- 11	2-	11/		GRANITE: medium to coarse grained, //		VH /		
	PYRIGHT			3- 3- 4- 5- 5- 6-			END OF BOREHOLE AT 1.85 m				- 'TC' BIT REFUSAL

## APPENDIX J - PSI INFORMATIC JKGeotechnics


### **BOREHOLE LOG**

Borehole No. **BH27** 1 / 1

	lient:				ASTRL						
	roject: ocation						LA HEALTH SERVICE ES HIGHWAY, MORUYA, NS\	N			
Jo	ob No.:	33942LT					thod: SPIRAL AUGER		.L. Sur	face: [,]	~17.3 m
	<b>ate:</b> 15/							Da	atum:	AHD	
P	ant Typ	<b>be:</b> JK308	1	1		Lo	gged/Checked By: W.S./A.B.	I			
Groundwater Record	SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION			-	-	<u>(((((</u>	CI	TOPSOIL: Silty sandy clay, low plasticity, brown, fine to coarse grained sand, trace of root fibres.	w~PL w>PL			_ GRASS COVER RESIDUAL
COMPL		N > 20 12,20/ 150mm \ REFUSAL /	17 - - - - 16	- - - - - - - -		-	Sandy, trace of noor libres. Silty sandy CLAY: medium plasticity, brown and grey, fine to coarse grained sand, with fine grained quartz gravel, trace of root fibres. Extremely Weathered granite: clayey SAND, fine to coarse grained, light grey, brown and orange brown, trace of fine grained quartz gravel.	XW	D		- MORUYA TONALITE - VERY LOW 'TC' BIT - RESISTANCE -
		N = 44 13,21,23		2							
		N=SPT 11/ 100mm REFUSAL	  - 14 	3-							
		N=SPT 5/50mm REFUSAL	- 13 -	4						-	- 
			- - - 12 - - -	5			GRANITE: medium to coarse grained, grey and red brown.	DW	L - M		LOW RESISTANCE WITH MODERATE BANDS GROUNDWATER MONITORING WELL INSTALLED TO 5.8m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 2.8m TO
	YRIGHT		- 11 - - -		-		END OF BOREHOLE AT 6.00 m				5.8m. CASING 0.1m TO 2.8m. 2mm SAND BACKFILL 3m TO 5.8m. BENTONITE SEAL 2m TO 3m. BACKFILLED WITH CUTTINGS TO SURFACE COMPLETED WITH A CONCRETED GATIC COVER

### **BOREHOLE LOG**

Borehole No. BH28



### **BOREHOLE LOG**

Borehole No. BH29

Client:	HEAL	TH IN	VFR/	ASTRL	ICTUF	RE				
Project:	PROP	OSE	DE	UROB	DDALL	A HEALTH SERVICE				
Location:	LOT 6	DP1	212	271, PI	RINCE	S HIGHWAY, MORUYA, NS	Ν			
Job No.: 3	3942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face: ~	-8.9 m
Date: 19/4/	21						Da	atum:	AHD	
Plant Type	: JK308				Lo	gged/Checked By: W.S./A.B.				
Groundwater Record U50 D8 D8 S37dMVS S37dMVS D8 D8	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
		-	-			TOPSOIL: Silty clay, medium plasticity, dark brown, trace of root fibres.	w>PL		-	GRASS COVER
	N = 5 2,2,3	8-	- - 1—		CI	Silty CLAY: medium plasticity, brown and grey, trace of fine to medium grained sand and root fibres.	w>PL	St	150 150	RESIDUAL
	N=SPT 13/ 150mm REFUSAL /	- - 7-	- - - 2		-	Extremely Weathered granite: silty CLAY, medium plasticity, with fine to medium grained sand, trace of fine grained quartz gravel, grey, brown and orange brown. Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained	XW	Hd		MORUYA TONALITE VERY LOW 'TC' BIT RESISTANCE
	N > 21 11,12,9/ 50mm REFUSAL ʃ	6-	- - 3- -			sand, fine grained quartz gravel, light grey and brown.				· · · · · ·
	N = 19 9,9,10		- - 4 -							- - - - - - - -
		4	- 5 -							VERY LOW RESISTANCE WITH LOW BANDS (POSSIBLY LESS WEATHERED CORE
	N=SPT 5/ 50mm REFUSAL	3-	- - - 6			END OF BOREHOLE AT 6.00 m				STONES)
		- - 2-	-							

### **BOREHOLE LOG**

Borehole No. BH30

	ient					RASTRU						
	ojeo							A HEALTH SERVICE				
LC	cat	ion	: LO	I 6 DP	'121	2271, PF	RINCE	S HIGHWAY, MORUYA, NS	N			
Jo	b N	<b>o</b> .:	33942	LT			Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~10.5 m
Da	ite:	16/	4/21						Da	atum:	AHD	
Pl	ant	Тур	be: JK3	808			Lo	gged/Checked By: W.S./A.B.				
P	SAMF		Tes	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
RING					-			TOPSOIL: Silty sandy clay, low م plasticity, brown, fine to coarse grained	w~PL		-	GRASS COVER
OF AUGERING					1		CL	\sand, trace of root fibres.	w>PL	VSt		RESIDUAL
06			N = 11	10	]			and brown, fine to coarse grained sand, with fine grained quartz gravel, trace of			250 350	-
			3,3,8				-	root fibres. Extremely Weathered granite: clayey	XW	D	300	MORUYA TONALITE
					1	心心		gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey,				- - VERY LOW 'TC' BIT
					-			brown and orange brown.				- RESISTANCE - -
			N=SP 10/ 50m		-							-
			REFUS		1							-
					2							- 
					-							-
				8	-							-
		-	N=SP		-							-
			8/ 50mi REFUS/		3							-
					]							-
				7	_							-
					-							-
					4							-
			N=SP	-	-			Extremely Weathered granite: gravelly clayey SAND, fine to coarse grained,				-
			12/ 100n	nm /	-			fine grained quartz gravel, grey.				-
				<u>*</u> 6								-
					_	+,,,-,						-
					5	「 <u>」</u> ()						
					-							-
				5	-			Extremely Weathered granite: clayey				-
			N > 10 15,10/ 50	mm				gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown.				-
			REFUS		6							-
					-							-
				4	-							-
					-							-
	YRIG				-	- )_`- )						-

### **BOREHOLE LOG**

Borehole No. BH30

P	lier roje oca	ect:	1:		OSE	DE	UROB	DDALL	RE LA HEALTH SERVICE IS HIGHWAY, MORUYA, NS	W			
J	ob l	No.:	33	3942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face: [,]	~10.5 m
	ate										atum:	AHD	
P	lant	Ту	pe:	JK308		1		Lo	gged/Checked By: W.S./A.B.	1 1			
Groundwater Record	SAN		s	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			1 1	N=SPT 0/ 100mm REFUSAL	- - 3-	-		-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, fine grained quartz gravel, light grey, brown and orange brown. <i>(continued)</i>	XW	D		LOW RESISTANCE WITH MODERATE BANDS (POSSIBLY LESS WEATHERED CORE
					-	8			REFER TO CORED BOREHOLE LOG				
					2		-						- - - - - - -
					- - 1-	-	-						- - - - - -
					-	- 10							- - - - - -
					0 — - -	- - 11-	-						-
					- -1-	-	-						- - - - - - -
					-	12-	-						- - - - - - -
					-2 -	13-							- - - - - -
					-3- -3	-							
COF					-								-

### **CORED BOREHOLE LOG**

Borehole No. BH30

	CI	ier	nt:		HEALT	H INFRASTRUCTURE						
	Pr	oje	ect:	I	PROPO	OSED EUROBODALLA HEAL	TH S	ERV	CE			
	Lc	oca	tion	:	LOT 6	DP1212271, PRINCES HIGH	NAY,	MO	RUYA, NSW			
	Jo	b l	No.:	339	42LT	Core Size:	NML	С		R	<b>.L. Surface:</b> ~10.5 m	
	Da	ate	: 16/	4/21		Inclination:	VER	TICA	L	D	atum: AHD	
	Pl	an	t Typ	be:	JK308	Bearing: N	/A			Le	ogged/Checked By: W.S./A.B.	
			(		5	CORE DESCRIPTION			POINT LOAD STRENGTH INDEX		DEFECT DETAILS	_
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	I _s (50) (m	0 m)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
	_		3-			START CORING AT 7.70m NO CORE 0.30m					-	
			- 2- -	8		GRANITE: medium to coarse grained, light brown, dark grey and light grey .	MW	M	+0.10			TE
	RETURN		- - - - - - - - - - - - - - 	9		GRANITE: medium to coarse grained, dark grey and light grey .	FR	VH		+	— (8.90m) J, 30°, P, R, Ch — (9.43m) J, 15°, P, S, Fe Sn — (9.52m) J, 10°, P, R, Fe Sn —	MORUYA TONALITE
שיי האוניים איני איני איני איני איני איני איני			-1 -1 -2 -2 -3 -3	11		END OF BOREHOLE AT 10.47 m						
CC	2P'	YRI	GHT				FRACT	JRES	OT MARKED ARE C	CONSI	DERED TO BE DRILLING AND HANDLING BR	EAK

### **BOREHOLE LOG**

Borehole No. BH31 1 / 1

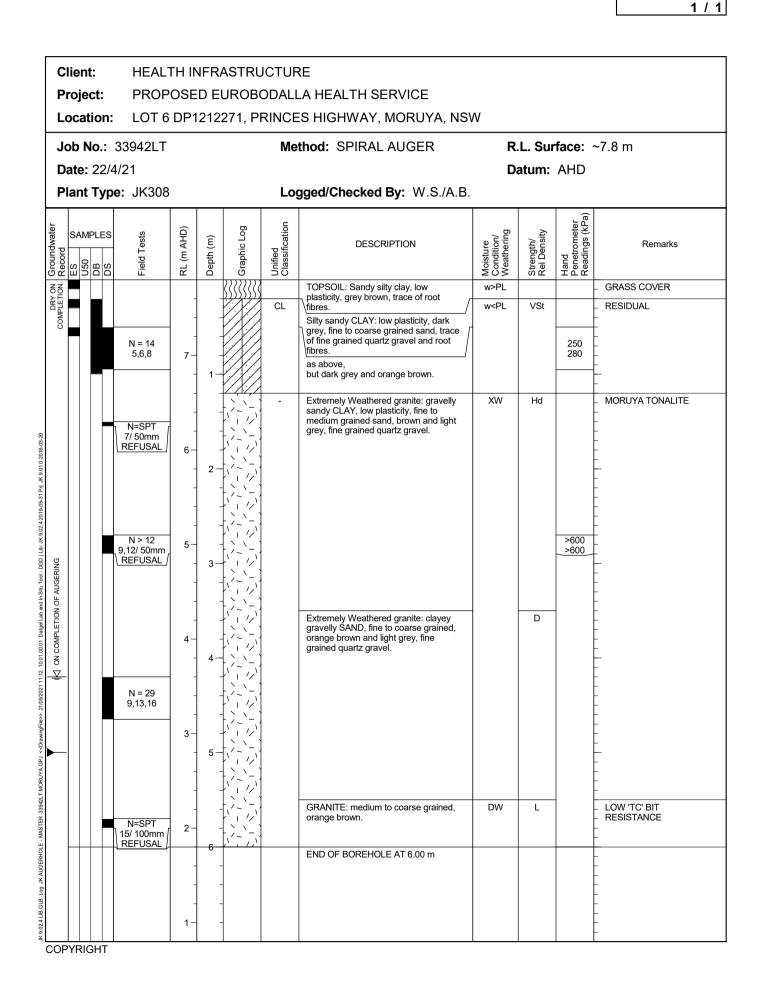
Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~13.6 m Date: 15/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests Ê DESCRIPTION Remarks Depth ( DB U50 Ч DRY ON COMPLETION TOPSOIL: Silty sandy clay, low GRASS COVER w~Pl plasticity, brown, fine to coarse grained CL-CI F - St RESIDUAL w>PI sand, trace of root fibres. Silty sandy CLAY: low to medium plasticity, orange brown and grey, fine to 13 80 coarse grained sand, trace of fine St - VSt N = 7150 grained quartz gravel, trace of root fibres. 0.3.4 220 Extremely Weathered granite: gravelly clayey SAND, fine to coarse grained, xw D MORUYA TONALITE 1, brown and orange brown. VERY LOW 'TC' BIT N > 18 RESISTANCE 12 10.18/ DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 100mm REFUSAL 2 Extremely Weathered granite: clayey 1 1 gravelly SAND, fine to medium grained, light grey, brown and orange brown, fine 1 grained quartz gravel. 11 N > 10 12,10/ 50mm REFUSAL 3 Datgel Lab and In Situ Tool -10 10.01.00.01 21/05/2021 11:12 N=SPT 5/ 20mm REFUSAL 9 <<DrawingFile>> 5 1 33942LT MORUYA.GPJ ł GRANITE: medium to coarse grained, DW Н MODERATE TO HIGH light grey and dark grey. RESISTANCE END OF BOREHOLE AT 5.30 m 'TC' BIT REFUSAL 8-MASTER 6 AUGERHOLE 5 G B.GLB 7 K 9.02.4

### **BOREHOLE LOG**

Borehole No. BH32 1 / 1

Clien Proje							RE LA HEALTH SERVICE				
Loca							S HIGHWAY, MORUYA, NSV	N			
Job I	No.:	33942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~10.1 m
Date	: 19	/4/21						Da	atum:	AHD	
Plant	t Ty	pe: JK308	3	1	, , , , , , , , , , , , , , , , , , ,	Lo	gged/Checked By: W.S./A.B.			, ,	
Record ES SS		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			10-	-			TOPSOIL: Sandy silty clay, low	w>PL			GRASS COVER
COMPLETION		N = 31 5,11,20		-		CL -	\fibres. Sitly CLAY: low plasticity, orange brown and grey, trace of fine to medium grained sand and fine grained quartz gravel and root fibres.	w~PL	VSt D	280 280	- RESIDUAL 
			9-	1			Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and grey, fine grained quartz gravel.				- - VERY LOW 'TC' BIT - RESISTANCE - -
		N = 37 12,17,20		2-							-
		N=SPT 15/ 150mm REFUSAL		3-							
		N=SPT 6/ 50mm REFUSAL	6-	4							- - - - - - - - - - -
			5	5			GRANITE: medium to coarse grained, dark grey and brown.	DW	L - M		LOW RESISTANCE WITH MODERATE BANDS
			4		-		END OF BOREHOLE AT 6.00 m				

## **BOREHOLE LOG**


Borehole No. BH33 1 / 1

Client: HEALTH INFRASTRUCTURE **Project:** PROPOSED EUROBODALLA HEALTH SERVICE LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW Location: Job No.: 33942LT Method: SPIRAL AUGER R.L. Surface: ~13.6 m Date: 20/4/21 Datum: AHD Logged/Checked By: W.S./A.B. Plant Type: JK308 Hand Penetrometer Readings (kPa) Unified Classification Groundwater Record (m AHD) Moisture Condition/ Weathering Strength/ Rel Density Graphic Log SAMPLES Field Tests E DESCRIPTION Remarks Depth ( DB U50 Ч DRY ON COMPLETION TOPSOIL: Sandy silty clay, low GRASS COVER w~Pl plasticity, grey brown, trace of root CL VSt - Hd RESIDUAL w>PL fibres Silty CLAY: low plasticity, grey brown and grey, trace of fine to medium 13 grained sand and fine grained quartz N = 24380 9,12,12 gravel and root fibres. 450 Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and grey, fine grained quartz xw D MORUYA TONALITE 1, VERY LOW 'TC' BIT N > 12 RESISTANCE 12 gravel. 12 12/ DGD | Llb: JK 9.02.4 2019-05-31 Pri: JK 9.01.0 2018-03-20 100mm REFUSAL 2 i. 11 N=SPT 5/ 50mm REFUSAL 3 Datgel Lab and In Situ Tool -10 10.01.00.01 л 21/05/2021 11:12 N=SPT 10/ 50mm REFUSAL VERY LOW RESISTANCE 9 WITH LOW BANDS (POSSIBLY LESS <<Drail WEATHERED CORE STONES) 33942LT MORUYA.GPJ 8 MASTER N=SPT NO SPT SAMPLE 6/ 20mm RETURN REFUSAL AUGERHOLE END OF BOREHOLE AT 6.00 m 5 7 LB.GLB K 9.02.4

COPYRIGHT

## **BOREHOLE LOG**

Borehole No. BH34



## **BOREHOLE LOG**

Borehole No. BH35

	lient: rojec		HEALT PROP					RE LA HEALTH SERVICE						
	ocati	on:	LOT 6	DP1	212	271, PF	RINCE	S HIGHWAY, MORUYA, NSV	V					
J	ob Ne	<b>o.:</b> 3	3942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~10.5 m		
	ate:						Datum: AHD							
P	lant ⁻	Туре	: JK308				Logged/Checked By: W.S./A.B.							
Groundwater Record	SAMP	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
Y ON RING				-				TOPSOIL: Sandy silty clay, low	w>PL			GRASS COVER		
DRY ON COMPLETION OF AUGERING				-	-	6XX	CI	\fibres. ] Silty gravelly CLAY: medium plasticity,	w>PL			RESIDUAL		
2.9			N = 40 9,16,24	10 — - - -	- - 1-		-	orange brown and grey, fine grained quartz gravel, trace of sand and root fibres. Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and light grey, fine to coarse grained quartz gravel.	XW	D		MORUYA TONALITE		
			N = 39 10,16,23	9	- - 2							-		
			N=SPT 10/ 100mm REFUSAL	- 8- - - - - - 7-	- - - - - -							-		
			N=SPT 10/ 50mm REFUSAL	- - 6 - -	4 - - 5							- 		
	PYRIG		N=SPT 12/ 100mm REFUSAL	- 5 - - 4 - -	- - - 6 - - - -							VERY LOW RESISTANCE WITH LOW BANDS (POSSIBLY LESS WEATHERED CORE STONES)		

## **BOREHOLE LOG**

Borehole No. BH35

	Cliei Proj Loca			OSE	DE	UROB	ODALL	RE LA HEALTH SERVICE IS HIGHWAY, MORUYA, NS	W				
	Job	No.:	33942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~10.5 m	
	Date	: 19/4	4/21							atum:	AHD		
	Plan	t Typ	e: JK308				Logged/Checked By: W.S./A.B.						
Groundwater	Record		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
			N=SPT 6/50mm REFUSAL	- 3 - - - 2 -			_	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and light grey, fine to coarse grained quartz gravel. (continued)	XW	D		VERY LOW RESISTANCE WITH LOW BANDS (POSSIBLY LESS WEATHERED CORE STONES) LOW RESISTANCE WITH	
					9			REFER TO CORED BOREHOLE LOG				LOW RESISTANCE WITH MODERATE BANDS	

### **CORED BOREHOLE LOG**

Borehole No. BH35

		ent: ject:			TH INFRASTRUCTURE DSED EUROBODALLA HEAL	TH S	ERVI	CE	Ξ						
L	.00	ation	:	LOT 6	DP1212271, PRINCES HIGH	NAY,	MOF	ิรบ	YA	, NS	W				
J	lob	No.:	339	942LT	Core Size:	NML	С						F	R.L. Surface: ~10.5 m	
		<b>e:</b> 19,			Inclination:		TICA	۱L						Datum: AHD	
F	Pla	nt Ty	be: .	JK308	Bearing: N	/A				-	Logged/Checked By: W.S./A.B.				
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	S	IND IND I _s (5		SF	PACI (mm	ו)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		2-		-	START CORING AT 8.70m										
			-	-	NO CORE 0.35m									-	
02-00		- - 1-	9		GRANITE: medium to coarse grained, brown and dark grey.	HW	VL - L	0.0	20						
					as above, but light grey and dark grey.	SW	M		0.3	0				(9.76m) J, 30°, P, S, Cn	EL.
100%	RETUR	0-	-						•0.	 50   					MORUYA TONALITE
I - DGD   LID: JN &			-			FR	VH			5.1				(10.58m) J, 35°, P, R, Fe Sn 	MORL
			11-											(11.00m) J, 40°, P, S, Fe Sn, XW infill (11.22m) J, 55°, P, R, Fe Sn	
Dagei Laband		-1-								5.1		- ·	88		
0.00.0			-		END OF BOREHOLE AT 11.60 m									-	
21:11 1202/00/1			12	-										-	
<ul> <li>Litawingrile&gt;&gt; 2</li> </ul>		-2-	-												
			13-												
		-3-		-											
			14-												
e reg un conter		-4-	-	- - -										- - - -	
JN 9.02.4 LID.GL												- 200	- 29	-	
$c \cap$		RIGHT					IDES N	IOT					NIS	IDERED TO BE DRILLING AND HANDLING BR	

## **BOREHOLE LOG**

Borehole No. BH36

Client: Project: Location:	PROPO	SED		DALL	RE LA HEALTH SERVICE ES HIGHWAY, MORUYA, NSV	N			
Job No.: 3				Me	thod: SPIRAL AUGER				~12.0 m
Date: 22/4/2 Plant Type:				Loc	gged/Checked By: W.S./A.B.	Da	atum:	AHD	
BAMPLES SAMPLES DD DD		RL (m AHD) Denth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
	N = 21 8,8,13			СІ	TOPSOIL: Sandy silty clay, low plasticity, grey brown, trace of root fibres. Silty gravelly CLAY: medium plasticity, orange brown and grey, fine grained quartz gravel, trace of sand and root fibres. Gravelly sandy CLAY: high plasticity, grey and brown, fine to coarse graned sand, fine grained quartz gravel.	w>PL w~PL	Hd	570 >600	GRASS COVER RESIDUAL
	REFUSAL	9- 3		-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained, brown and light grey, fine grained quartz gravel.	XW	D		MORUYA TONALITE
	N=SPT 6/ 50mm REFUSAL	-							- - - - VERY LOW RESISTANCE - - WITH LOW BANDS - - - (POSSIBLY LESS - - WEATHERED CORE - - - - - - - - - - - - - - -
COPYRIGHT	REFUSAL	-6( - - -			END OF BOREHOLE AT 6.00 m				

# APPENDIX J - PSI INFORMATIC JKGeotechnics

## **BOREHOLE LOG**

Borehole No. **BH37** 1 / 1

	lient:				ASTRU								
	roject: ocation:						LA HEALTH SERVICE IS HIGHWAY, MORUYA, NSV	N					
Jo	ob No.:	33942LT				Me	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~12.3 m		
	ate: 19/4							Da	atum:	AHD			
P	lant Typ	<b>e:</b> JK308	JK308				gged/Checked By: W.S./A.B.						
Groundwater Record	SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
DRY ON COMPLETION			-	-		CI-CH	TOPSOIL: Sandy silty clay, low plasticity, grey brown, trace of root	w>PL w>PL	Hd	-	GRASS COVER		
COMPL			12-	-		CI-CH	\fibres. Silty sandy CLAY: medium to high plasticity, orange brown and grey, fine to	W/FL	пи		- RESIDUAL - -		
		N = 18 6,8,10	-	-			coarse grained, tracer of fine grained quartz gravel and root fibres.			500 550	-		
			-	1		-	Extremely Weathered granite: clayey gravelly SAND, fine to coarse grained,	XW	D		MORUYA TONALITE		
			11-				brown and light grey, fine grained quartz gravel.				- VERY LOW 'TC' BIT - RESISTANCE -		
		N = 23 10,11,12	-	-							-		
			-	2-	('   //   )						-		
			10-								-		
			-	-							-		
		N > 18 10,18/	-	-							-		
		150mm REFUSAL		3-							-  -		
			9-								-		
,			-	-							-		
			-	-							- - -		
		NHODT	-	4-							-		
		N=SPT 4/ 0mm REFUSAL	8-	-							-		
			-	-	- '						-		
			-	5-							-		
			7-								-		
			-								-		
		N=SPT 5/ 50mm	-	-							- - NO SPT SAMPLE - RETURN		
		REFUSAL	-	6-	<u>+ / _ ` - /</u>		END OF BOREHOLE AT 6.00 m				-		
			6-	-							-		
				-							-		
				-							-		

COPYRIGHT

## **BOREHOLE LOG**

Borehole No. BH38

P	Client:       HEALTH INFRASTRUCTURE         Project:       PROPOSED EUROBODALLA HEALTH SERVICE         Location:       LOT 6 DP1212271, PRINCES HIGHWAY, MORUYA, NSW												
Jo	ob No	o.: (	33942LT				Ме	thod: SPIRAL AUGER	<b>R.L. Surface:</b> ~15.4 m				
	ate: 2					Datum: AHD							
Ρ	ant -	Туре	e: JK308				Lo	gged/Checked By: W.S./A.B.					
Groundwater Record	SAMP		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
₹ 10N				_	_		-	TOPSOIL: sandy silty clay, low plasticity, grey brown, trace of root fibres.	w~PL			GRASS COVER	
DRY ON COMPLETION				15 -	-		CI	Silty CLAY: medium plasticity, orange	w <pl XW</pl 	D		- RESIDUAL - MORUYA TONALITE	
0			N > 27 10,17,10/ 50mm REFUSAL /	-	- - 1-			grained sand and fine grained quartz gravel and root fibres. Extremely Weathered GRANITE: clayey gravelly SAND, fine to coarse grained, brown and grey, fine to coarse grained quartz gravel.	~~~	U		- VERY LOW 'TC' BIT - VERY LOW 'TC' BIT - RESISTANCE 	
			N=SPT 10/ 50mm REFUSAL	14	- - 2-							- - - - - - -	
			N=SPT (	- 13 -	-							- - - - - -	
			5/ 20mm REFUSAL	- - 12-	3							- 	
			N=SPT 5/ 50mm REFUSAL	- - - 11 - -	- 4 - -							-	
			N=SPT 5/ 0mm REFUSAL	- - 10 -	5							- - - - - - - - - - - - - - - - - - -	
				9-	-6			END OF BOREHOLE AT 6.00 m				-	
	YRIG											-	

### **ENVIRONMENTAL LOGS EXPLANATION NOTES**

### INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

#### DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤25	≤12		
Soft (S)	> 25 and $\leq$ 50	> 12 and $\leq$ 25		
Firm (F)	> 50 and $\leq$ 100	> 25 and $\leq$ 50		
Stiff (St)	$>$ 100 and $\leq$ 200	$>$ 50 and $\leq$ 100		
Very Stiff (VSt)	$>$ 200 and $\leq$ 400	$>$ 100 and $\leq$ 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable – soil crumbles			

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

### INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

**Test Pits:** These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

**Continuous Spiral Flight Augers:** The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

**Rock Augering:** Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

**Wash Boring:** The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

**Mud Stabilised Drilling:** Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

**Continuous Core Drilling:** A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

**Standard Penetration Tests:** Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

#### LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

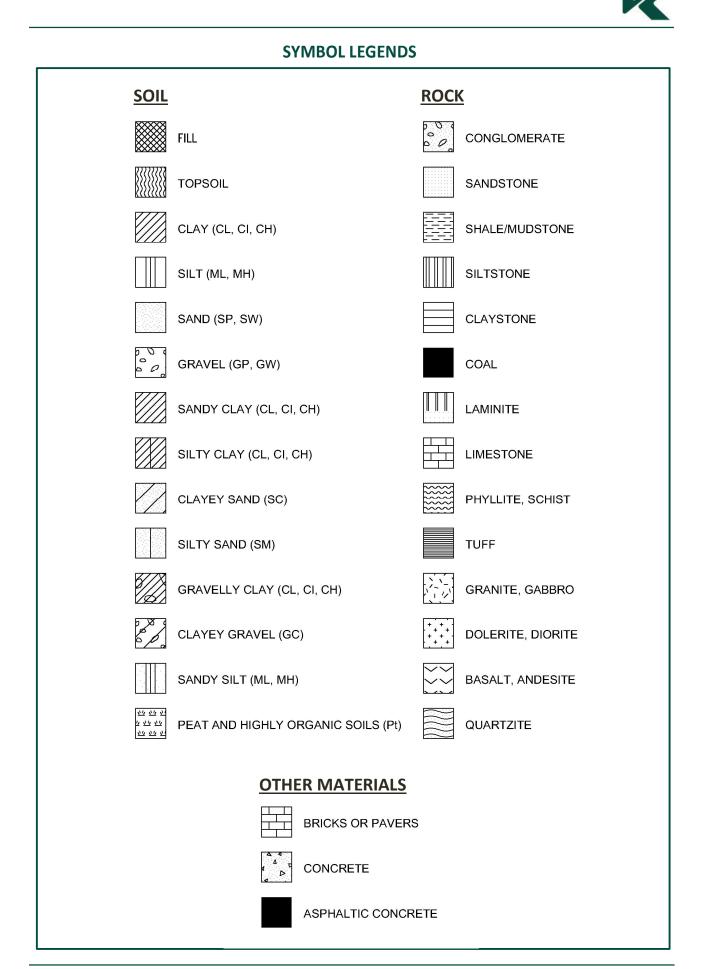
Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

#### GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.


#### FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

#### LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.



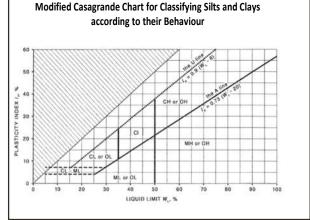


### **CLASSIFICATION OF COARSE AND FINE GRAINED SOILS**

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c&lt;3</c<sub>
Coarse grained soil (more than 63% of soil excluding oversize fraction is greater than 0.075mm)	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
of sail exdu		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
re than 65% c greater than (	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
iai (mare gn	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
egraineds	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group				Laboratory Classification	
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
alpr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ained soils (more than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line
oretha onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m te fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
inegrained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

### Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature  $1 < C_c < 3$ . Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and  $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$ 

Where  $D_{10}$ ,  $D_{30}$  and  $D_{60}$  are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

#### NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature ( $C_c$ ) and uniformity ( $C_u$ ) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.



### **JK**Environments

### LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record	<b>—</b>	Standing water level. T	ime delay following compl	etion of drilling/excavation may be shown.			
	— <del>с</del> —	Extent of borehole/tes	t pit collapse shortly after o	drilling/excavation.			
		Groundwater seepage	into borehole or test pit no	oted during drilling or excavation.			
Samples	ES		th indicated, for environm				
	U50		meter tube sample taken	-			
	DB		taken over depth indicated				
	DS	-	mple taken over depth ind				
	ASB		depth indicated, for asbes				
	ASS		depth indicated, for acid s	-			
	SAL	Soil sample taken over	depth indicated, for salinit	y analysis.			
	PFAS	Soil sample taken over	depth indicated, for analys	sis of Per- and Polyfluoroalkyl Substances.			
Field Tests	N = 17 4, 7, 10		150mm penetration. 'Refu	tween depths indicated by lines. Individual isal' refers to apparent hammer refusal within			
	N _c = 5	Solid Cone Penetration	n Test (SCPT) performed b	etween depths indicated by lines. Individual			
	7			$0^\circ$ solid cone driven by SPT hammer. 'R' refers			
	3R	<ul> <li>to apparent hammer re</li> </ul>	efusal within the correspor	nding 150mm depth increment.			
	VNS = 25	Vane shear reading in l	Pa of undrained shear stre	en <i>e</i> th			
	PID = 100	_	or reading in ppm (soil san	-			
Moisture Condition	w > PL	Moisture content estin	nated to be greater than pl	astic limit.			
(Fine Grained Soils)	$w \approx PL$		nated to be approximately				
	w < PL	Moisture content estin	nated to be less than plasti	c limit.			
	w≈LL		nated to be near liquid limi				
	w > LL	Moisture content estin	nated to be wet of liquid lir	nit.			
(Coarse Grained Soils)	D		through fingers.				
	М	MOIST – does not run freely but no free water visible on soil surface.					
	W	WET – free water	visible on soil surface.				
Strength (Consistency)	VS	VERY SOFT – unco	nfined compressive streng	th $\leq$ 25kPa.			
Cohesive Soils	S	SOFT – unco	nfined compressive streng	th > 25kPa and $\leq$ 50kPa.			
	F	FIRM – unco	nfined compressive streng	th > 50kPa and $\leq$ 100kPa.			
	St	STIFF – unco	nfined compressive streng	th > 100kPa and $\leq$ 200kPa.			
	VSt	VERY STIFF – unco	nfined compressive streng	th > 200kPa and $\leq$ 400kPa.			
	Hd	HARD – unco	nfined compressive streng	th > 400kPa.			
	Fr	FRIABLE – strer	gth not attainable, soil cru	mbles.			
	( )	Bracketed symbol ind assessment.	icates estimated consiste	ncy based on tactile examination or other			
Density Index/ Relative Density			Density Index (I⊳) Range (%)	SPT 'N' Value Range (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE	≤15	0-4			
	L	LOOSE	> 15 and $\leq$ 35	4-10			
	MD	MEDIUM DENSE	> 35 and ≤ 65	10-30			
	D	DENSE	> 65 and ≤ 85	30 - 50			
	VD	VERY DENSE	> 85	> 50			
	( )	Bracketed symbol indicates estimated density based on ease of drilling or other assessment.					

	[			
Log Column	Symbol	Definition		
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.		
Remarks	'V' bit	Hardened steel 'V' shaped bit.		
	'TC' bit	Twin pronged tungsten carbide bit.		
	<b>T</b> ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.		
	Soil Origin	The geological origin of the soil can generally be described as:		
		RESIDUAL	<ul> <li>soil formed directly from insitu weathering of the underlying rock.</li> <li>No visible structure or fabric of the parent rock.</li> </ul>	
		EXTREMELY WEATHERED	<ul> <li>soil formed directly from insitu weathering of the underlying rock.</li> <li>Material is of soil strength but retains the structure and/or fabric of the parent rock.</li> </ul>	
		ALLUVIAL	<ul> <li>– soil deposited by creeks and rivers.</li> </ul>	
		ESTUARINE	<ul> <li>soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents.</li> </ul>	
		MARINE	<ul> <li>soil deposited in a marine environment.</li> </ul>	
		AEOLIAN	<ul> <li>soil carried and deposited by wind.</li> </ul>	
		COLLUVIAL	<ul> <li>soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits.</li> </ul>	
		LITTORAL	<ul> <li>beach deposited soil.</li> </ul>	

### **Classification of Material Weathering**

Term		Abbreviation		Definition	
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.	

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

### **Rock Material Strength Classification**

			Guide to Strength		
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment	
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.	
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.	
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.	
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	



### **Appendix J: Guidelines and Reference Documents**





Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

